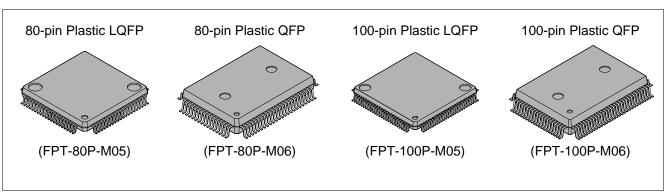
16-bit Proprietary Microcontroller

F2MC-16L MB90670/675 Series

MB90671/672/673/T673/P673 (MB90670 Series) MB90676/677/678/T678/P678 (MB90675 Series)

■ DESCRIPTION

The MB90670/675 series is a member of 16-bit proprietary single-chip microcontroller F²MC*¹-16L family designed to be combined with an ASIC (Application Specific IC) core. The MB90670/675 series is a high-performance


general-purpose 16-bit microcontroller for high-speed real-time processing in various industrial equipment, OA equipment, and process control.

The instruction set of F²MC-16L CPU core inherits AT architecture of F²MC-8 family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data (32-bit).

The MB90670/675 series has peripheral resources of UART0, UART1(SCI), an 8/10-bit A/D converter, an 8/16-bit PPG timer, a 16-bit reload timer, a 24-bit free-run timer, an output compare (OCU), an input capture (ICU), DTP/external interrupt circuit, an I²C*² interface (in MB90675 series only). Embedded peripheral resources performs data transmission with an intelligent I/O service function without the intervention of the CPU, enabling real-time control in various applications.

- *1: F²MC stands for FUJITSU Flexible Microcontroller.
- *2: Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

■ PACKAGE

■ FEATURES

Clock

Embedded PLL clock multiplication circuit

Operating clock (PLL clock) can be selected from divided-by-2 of oscillation or one to four times the oscillation (at oscillation of 4 MHz, 4 MHz to 16 MHz).

Minimum instruction execution time of 62.5 ns (at oscillation of 4 MHz, four times the PLL clock, operation at Vcc of 5.0 V)

CPU addressing space of 16 Mbytes

Internal addressing of 24-bit

External accessing can be performed by selecting 8/16-bit bus width (external bus mode)

Instruction set optimized for controller applications

Rich data types (bit, byte, word, long word)

Rich addressing mode (23 types)

High code efficiency

Enhanced precision calculation realized by the 32-bit accumulator

Instruction set designed for high level language (C) and multi-task operations

Adoption of system stack pointer

Enhanced pointer indirect instructions

Barrel shift instructions

Enhanced execution speed

4-byte instruction queue

Enhanced interrupt function

8 levels, 32 factors

• Automatic data transmission function independent of CPU operation

Extended intelligent I/O service function (EI²OS)

• Low-power consumption (standby) mode

Sleep mode (mode in which CPU operating clock is stopped)

Timebase timer mode (mode in which other than oscillation and timebase timer are stopped)

Stop mode (mode in which oscillation is stopped)

CPU intermittent operation mode

Hardware standby mode

Process

CMOS technology

• I/O port

MB90670 series: Maximum of 65 ports MB90675 series: Maximum of 84 ports

• Timer

Timebase timer/watchdog timer: 1 channel

8/16-bit PPG timer: 8-bit \times 2 channels or 16-bit \times 1 channel

16-bit reload timer: 2 channels 24-bit free-run timer: 1 channel

• Input capture (ICU)

Generates an interrupt request by latching a 24-bit free-run timer counter value upon detection of an edge input to the pin.

• Output compare (OCU)

Generates an interrupt request and reverse the output level upon detection of a match between the 24-bit freerun timer counter value and the compare setting value.

• I²C interface (in MB90675 series only)

Serial I/O port for supporting Inter IC BUS

(Continued)

• UART0

With full-duplex double buffer (8-bit length)

Clock asynchronized or clock synchronized transmission (with start and stop bits) can be selectively used.

• UART1 (SCI)

With full-duplex double buffer (8-bit length)

Clock asynchronized or clock synchronized serial transmission (I/O extended serial) can be selectively used.

• DTP/external interrupt circuit (4 channels)

A module for starting extended intelligent I/O service (EI²OS) and generating an external interrupt triggered by an external input.

• Wake-up interrupt

Receives external interrupt requests and generates an interrupt request upon an "L" level input.

• Delayed interrupt generation module

Generates an interrupt request for switching tasks.

• 8/10-bit A/D converter (8 channels)

8-bit or 10-bit resolution can be selectively used.

Starting by an external trigger input.

■ PRODUCT LINEUP

• MB90670 series

Part number	MB90671	MB90672	MB90673	MB90T673	MB90P673		
Classification	N	Mask ROM produc	ets	External ROM product	One-time PROM product		
ROM size	16 Kbytes	32 Kbytes	48 Kbytes	External ROM	48 Kbytes		
RAM size	640 bytes	1.64 Kbytes		2 Kbytes			
CPU functions	Ins Minimu	ım execution time	8 bits, 16 bits 1 byte to 7 bytes 1 bit, 8 bits, 16 bit 62.5 ns (at machi	ts ne clock of 16 MH e clock of 16 MHz			
Ports		purpose I/O ports	s (CMOS output): 5 s (N-ch open-drain				
UART0	Clock synchronized transmission (500 Kbps to 2 Mbps) Clock asynchronized transmission (4800 Kbps to 500 kbps) Transmission can be performed by bi-directional serial transmission or by master/slave connection.						
UART1 (SCI)	Clo	ck asynchronized n can be performe	transmission (240	0 Kbps to 2 Mbps 0 Kbps to 62500 b serial transmissio	ps)		
8/10-bit A/D converter	Continuo	hot conversion mo bus conversion mo	de (converts sele		nuously)		
8/16-bit PPG timer	Number of channels: 2 8-bit or 16-bit PPG operation A pulse wave of given intervals and given duty ratios can be output. Pulse cycle: 125 ns to 16.78 s (at oscillation of 4 MHz, machine clock of 16 MHz)						
16-bit reload timer	Number of channels: 2 16-bit reload timer operation Interval: 125 ns to 131 ms (at machine clock of 16 MHz) External event count can be performed.						
24-bit free-run timer	Number of channel :1 Overflow interrupts or intermediate bit interrupts may be generated.						
Output compare unit (OCU)			ımber of channels A match signal of				

Part number	MB90671	MB90672	MB90673	MB90T673	MB90P673	
Input capture unit (ICU)	Rewriting a		mber of channel pon a pin input (s: 4 rising, falling, or t	ooth edges)	
DTP/external interrupt circuit		ising edge, a falli		: 4 level input, or an I/O service (El²OS		
Wake-up interrupt			umber of inputs d by an "L" leve			
Delayed interrupt generation module	An interrupt generation module for switching tasks used in real-time operating systems.					
I ² C interface			None			
Timebase timer	Interru		18-bit counter I ms, 4.096 ms, oscillation of 4 N	16.384 ms, 131.0 1Hz)	072 ms	
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (at oscillation of 4 MHz, minimum value)					
Low-power consumption (standby) mode					are stand-by	
Process			CMOS			
Operating voltage*		2.7 V to 5.5 V				

^{*:} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")

• MB90675 series

Part number	MB90676	MB90677	MB90678	MB90T678	MB90P678	MB90V670	
Classification	Ma	ask ROM produ	cts	External ROM product	One-time PROM product	Evaluation product	
ROM size	32 Kbytes	48 Kbytes	64 Kbytes	None	64 Kbytes	_	
RAM size	1.64 Kbytes	2 Kbytes		3 Kbytes		4 Kbytes	
CPU functions	Instru Ins Minimum	Data bit length: execution time:	8 bits, 16 bits 1 byte to 7 byte 1 bit, 8 bits, 16 62.5 ns (at ma		6 MHz) MHz, minimun	n value)	
Ports		al-purpose I/O	ports (CMOS o ports (N-ch ope	utput): 74 en-drain output):	: 10		
UART0	Transmission connection.	Clock asynchr	onized transmis	ission (500 Kbp ssion (4800 Kbp tional serial tran	s to 500 Kbps)		
UART1 (SCI)	Transmission connection.	Clock asynchro	onized transmis	ission (500 Kbp sion (2400 Kbp tional serial tran	s to 62500 bps)		
8/10-bit A/D converter	Cont	ne-shot convers	Number of sion mode (convision mode)	or 8-bit can be so of inputs: 8 verts selected co verts selected cl d channel and s	hannel only one	ce) busly)	
8/16-bit PPG timer	Number of channels: 2 PPG operation of 8-bit or 16-bit Pulse of given intervals and given duty ratios can be output Pulse interval 125 ns to 16.78 s (at oscillation of 4 MHz, machine clock of 16 MHz)						
16-bit reload timer	Number of channels: 2 16-bit reload timer operation Interval: 125 ns to 131 ms (at machine clock of 16 MHz) External event count can be performed.						
24-bit free-run timer	Number of channel :1 Overflow interrupts or intermediate bit interrupts may be generated.						
Output compare (OCU)		Pin input t		channels: 8 signal of compa	re register		

(Continued)

Part number	MB90676	MB90677	MB90678	MB90T678	MB90P678	MB90V670	
Input capture (ICU)	Rewr	riting a register	Number of value upon a pi	channels: 4 n input (rising, f	alling, or both e	dges)	
DTP/external interrupt circuit			Number of a falling edge, or extended into				
Wake-up interrupt				of inputs: 8 "L" level input.			
Delayed interrupt generation module	An interrupt	generation mod	dule for switching	g tasks used in	real-time opera	ting systems.	
I ² C interface		Seria	al I/O port for sup	oporting Inter IC	BUS		
Timebase timer		Interrupt interva	al: 1.024 ms, 4.0	counter 196 ms, 16.384 nn of 4 MHz)	ms, 131.072 ms	S	
Watchdog timer	Re		interval: 3.58 m oscillation of 4 M			ms	
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/timebase timer/hardware stand-by						
Process	CMOS						
Power supply voltage for operation*	2.7 V to 5.5 V						

^{* :} Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.") Assurance for the MB90V670 is given only for operation with a tool at a power voltage of 2.7 V to 5.5 V, an operating temperature of 0°C to 70°C, and an operating frequency of 1.5 MHz to 16 MHz.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90671 MB90672 MB90673 MB90T673	MB90P673	MB90676 MB90677 MB90678 MB90T678	MB90P678	MB90V670
FPT-80P-M05	0	0	×	×	×
FPT-80P-M06	0	0	×	×	×
FPT-100P-M05	×	×	0	0	×
FPT-100P-M06	×	×	0	0	×

○ : Available ×: Not available

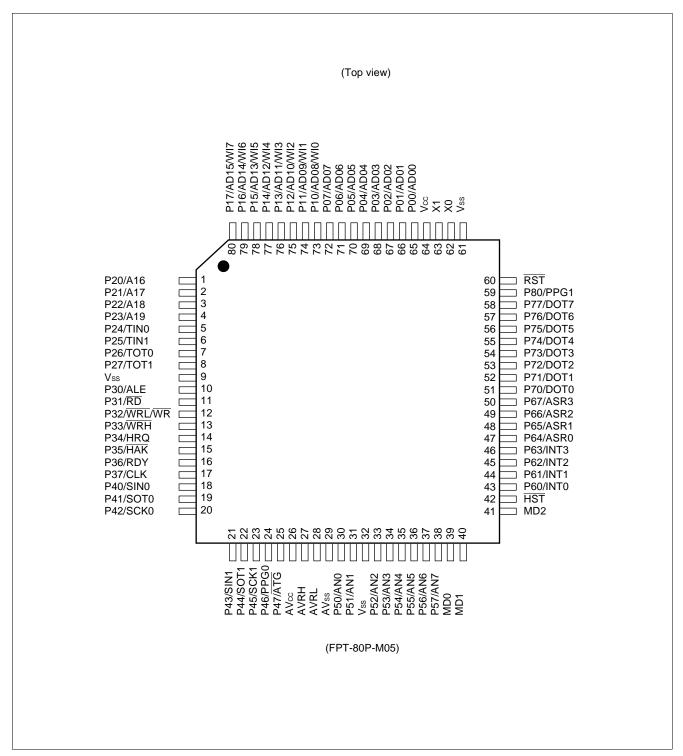
Note: For more information about each package, see section "■ Package Dimensions."

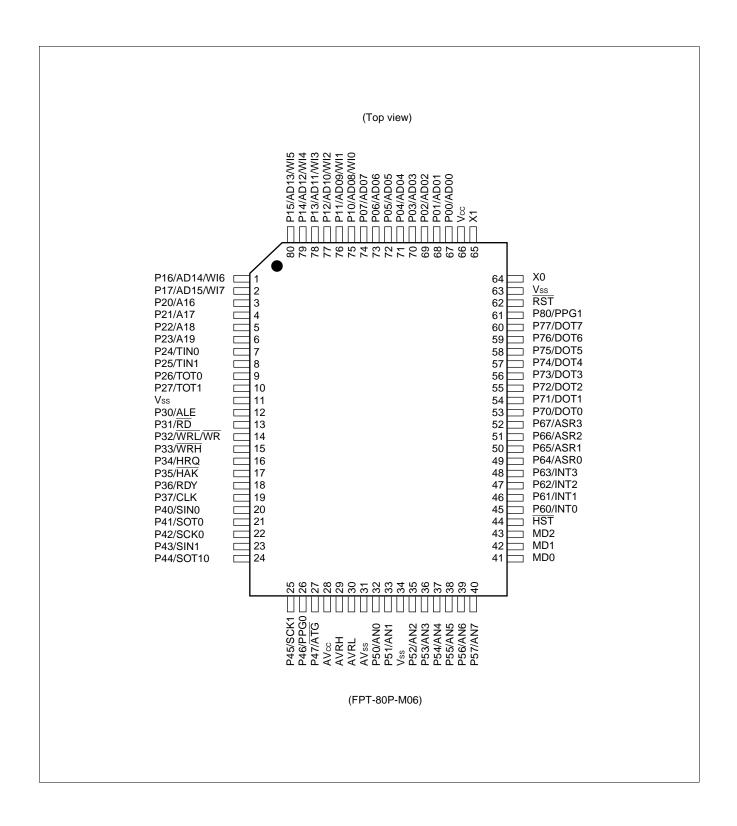
■ DIFFERENCES AMONG PRODUCTS

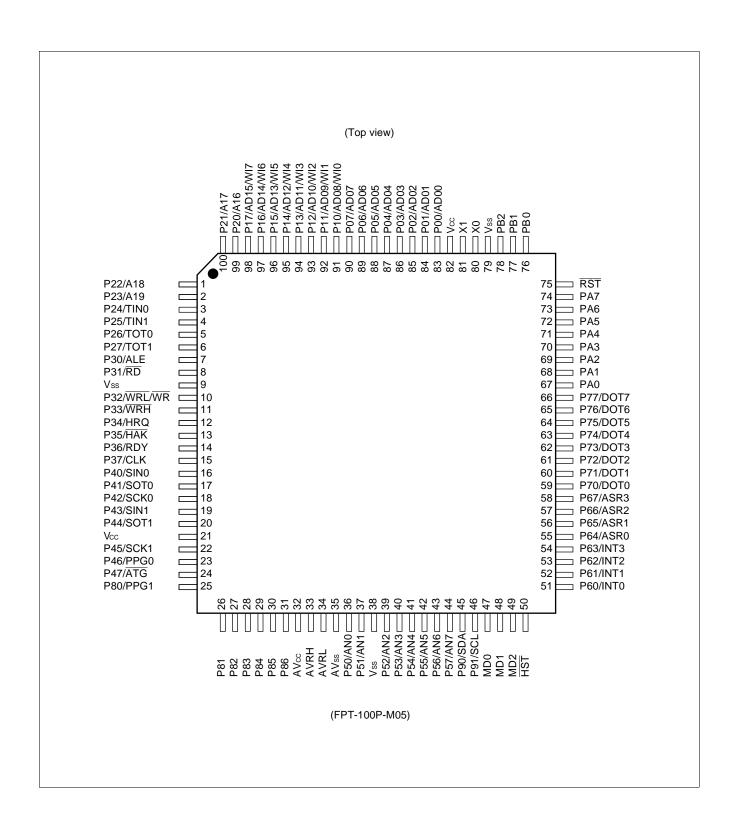
1. Memory Size

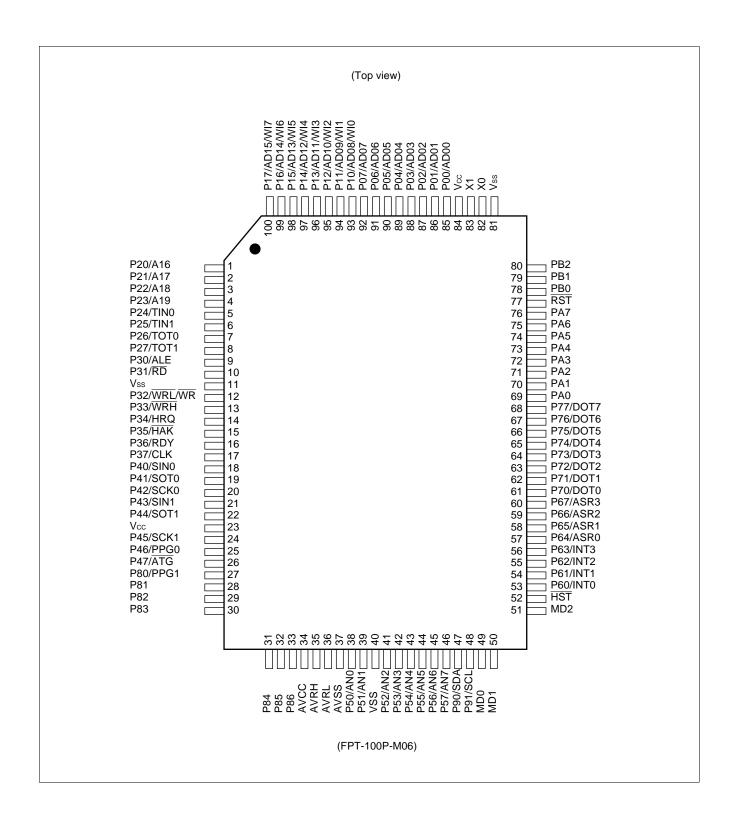
In evaluation with an evaluation product, note the difference between the evaluation chip and the chip actually used. The following items must be taken into consideration.

- The MB90V670 does not have an internal ROM, however, operations equivalent to chips with an internal ROM
 can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the
 development tool.
- In the MB90V670, images from FF4400H to FFFFFFH are mapped to bank 00, and FE0000H to FF3FFFH to mapped to bank FE and FF only. (This setting can be changed by configuring the development tool.)
- In the MB90678/MB90P678, images from FF4000H to FFFFFFH are mapped to bank 00, and FF0000H to FF3FFFH to bank FF only.


2. Mask Options


Functions selected by optional settings and methods for setting the options are dependent on the product types. Refer to "


Mask Options" for detailed information.


Note that mask option is fixed in MB90V670 series.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

	Pin	no.			Oineit			
LQFP -80*1	QFP -80*2	LQFP -100*3	QFP -100*4	Pin name	Circuit type	Function		
62	64	80	82	X0	Α (Ο : !! - : !)	Crystal oscillator pins		
63	65	81	83	X1	(Oscillation)			
39 to 41	41 to 43	47 to 49	49 to 51	MD0 to MD2	F (CMOS)	Input pins for selecting operation modes Connect directly to Vcc or Vss.		
60	62	75	77	RST	H (CMOS/H)	External reset request input		
42	44	50	52	HST	G (CMOS/H)	Hardware standby input pin		
65 to 72	67 to 74	83 to 90	85 to 92	P00 to P07	B (CMOS)	General-purpose I/O port This function is valid in the single-chip mode.		
				AD00 to AD07		I/O pins for the lower 8-bit of the external address data bus This function is valid in the mode where the external bus is valid.		
73 to 78, 79, 80	75 to 80, 1, 2	91 to 96, 97, 98	93 to 98, 99, 100	P10 to P15, P16, P17	B (CMOS)	General-purpose I/O port This function is valid in the single-chip mode.		
				AD08 to AD13, AD14, AD15		AD13, AD14,		I/O pins for the upper 8-bit of the external address data bus This function is valid in the mode where the external bus is valid.
				WI0 to WI5, WI6, WI7		I/O pins for wake-up interrupts This function is valid in the single-chip mode. Because the input of the DTP/external interrupt circuit is used as required when the DTP/external interrupt circuit is enabled, and it is necessary to stop outputs by other functions unless such outputs are made intentionally.		
1, 2, 3, 4	3, 4, 5, 6	99, 100, 1, 2	1, 2, 3, 4	P20, P21, P22, P23	B (CMOS)	General-purpose I/O port This function becomes valid in the single-chip mode or the external address output control register is set to select a port.		
				A16, A17, A18, A19		Output pins for the external address bus of A16 to A19 This function is valid in the mode where the external bus is valid and the upper address control register is set to select an address.		

*1: FPT-80P-M05

*2: FPT-80P-M06

*3: FPT-100P-M05

*4: FPT-100P-M06

	Pin	no.			Circuit	
LQFP -80*1	QFP -80*2	LQFP -100*3	QFP -100*4	Pin name	type	Function
5, 6	7, 8	3, 4	5, 6	P24, P25	E (CMOS/H)	General-purpose I/O port This function is always valid.
				TINO, TIN1		Event input pins of 16-bit reload timer 0 and 1 Because this input is used as required when the 16-bit reload timer is performing input operations, and it is necessary to stop outputs by other functions unless such outputs are made intentionally.
7, 8	9, 10	5, 6	7, 8	P26, P27	E (CMOS/H)	General-purpose I/O port This function is valid when outputs from 16-bit reload timer 0 and 1 are disabled.
				TOT0, TOT1		Output pins for 16-bit reload timer 0 and 1 This function is valid when output from 16-bit reload timer 0 and 1 are enabled.
10	12	7	9	P30	B (CMOS)	General-purpose I/O port This function is valid in the single-chip mode.
				ALE		Address latch enable output pin This function is valid in the mode where the external bus is valid.
11	13	8	10	P31	B (CMOS)	General-purpose I/O port This function is valid in the single-chip mode.
				RD		Read strobe output pin for the data bus This function is valid in the mode where the external bus is valid.
12	14	10	12	P32	B (CMOS)	General-purpose I/O port This function is valid in the single-chip mode or WRL/WR pin output is disabled.
				WRL WR		Write strobe output pin for the data bus This function is valid when WRL/WR pin output is enabled in the mode where external bus is valid. WRL is used for holding the lower 8-bit for write strobe in 16-bit access operations, while WR is used for holding 8-bit data for write strobe in 8-bit access operations.
13	15	11	13	P33	B (CMOS)	General-purpose I/O port This function is valid in the single-chip mode, in the external bus 8-bit mode, or WRH pin output is disabled.
				WRH		Write strobe output pin for the upper 8-bit of the data bus This function is valid when the external bus 16-bit mode is selected in the mode where the external bus is valid, and WRH output pin is enabled.

*1: FPT-80P-M05

(Continued)

*2: FPT-80P-M06 *3: FPT-100P-M05 *4: FPT-100P-M06

	Pin no.			Circuit		
LQFP -80*1	QFP -80*2	LQFP -100*3	QFP -100*4	Pin name	Circuit type	Function
14	16	12	14	P34	B (CMOS)	General-purpose I/O port This function is valid when both the single-chip mode and the hold function are disabled.
				HRQ		Hold request input pin This function is valid in the mode where the external bus is valid or when the hold function is enabled.
15	17	13	15	P35	B (CMOS)	General-purpose I/O port This function is valid when both the single-chip mode and the hold function are disabled.
				HAK		Hold acknowledge output pin This function is valid in the mode where the external bus is valid or when the hold function is enabled.
16	18	14	16	P36	B (CMOS)	General-purpose I/O port This function is valid when both the single-chip mode and the external ready function are disabled.
				RDY		Ready input pin This function is valid when the external ready function is enabled in the mode where the external bus is valid.
17	19	15	17	P37	B (CMOS)	General-purpose I/O port This function is valid in the single-chip mode or when the CLK output is disabled.
				CLK		CLK output pin This function is valid when CLK output is disabled in the mode where the external bus is valid.
18	20	16	18	P40	E (CMOS/H)	General-purpose I/O port This function is always valid.
				SIN0		Serial data input pin of UART0 Because this input is used as required when UART0 is performing input operations, and it is necessary to stop outputs by other functions unless such outputs are made intentionally.
19	21	17	19	P41	E (CMOS/H)	General-purpose I/O port This function is valid when serial data output from UART0 is disabled.
				SOT0		Serial data output pin of UART0 This function is valid when serial data output from UART0 is enabled.

*1: FPT-80P-M05

*2: FPT-80P-M06

*3: FPT-100P-M05

*4: FPT-100P-M06

	Pin	no.			Circuit	
LQFP -80*1	QFP -80*2	LQFP -100*3	QFP -100*4	Pin name	Circuit type	Function
20	22	18	20	P42	E (CMOS/H)	General-purpose I/O port This function is valid when clock output from UART0 is disabled.
				SCK0		Clock I/O pin of UART0 This function is valid when clock output from UART0 is enabled. Because this input is used as required when UART0 is performing input operations, and it is necessary to stop outputs by other functions unless such outputs are made intentionally.
21	23	19	21	P43	E (CMOS/H)	General-purpose I/O port This function is always valid.
				SIN1		Serial data input pin of UART1 (SCI) Because this input is used as required when UART1 (SCI) is performing input operations, and it is necessary to stop outputs by other functions unless such outputs are made intentionally.
22	24	20	22	P44	E (CMOS/H)	General-purpose I/O port This function is valid when serial data output from UART1 (SCI) is disabled.
				SOT1		Serial data output pin of UART1 (SCI) This function is valid when serial data output from UART1 (SCI) is enabled.
23	25	22	24	P45	E (CMOS/H)	General-purpose I/O port This function is valid when clock output from UART1 (SCI) is disabled.
				SCK1		Clock I/O pin of UART1 (SCI) This function is valid when clock output from UART1 (SCI) is enabled. Because this input is used as required when UART1 (SCI) is performing input operations, and it is necessary to stop outputs by other functions unless such outputs are made intentionally.
24	26	23	25	P46	E (CMOS/H)	General-purpose I/O port This function is valid when waveform output from 8/16-bit PPG timer 0 is disabled.
				PPG0		Output pin of 8/16-bit PPG timer 0 This function is valid when waveform output from 8/16-bit PPG timer 0 is enabled.

*1: FPT-80P-M05

(Continued)

*2: FPT-80P-M06

*3: FPT-100P-M05 *4: FPT-100P-M06

	Pin no.			Circuit		
LQFP -80*1	QFP -80*2	LQFP -100*3	QFP -100*4	Pin name	Circuit type	Function
25	27	24	26	P47	E (CMOS/H)	General-purpose I/O port This function is always valid.
				ATG		Trigger input pin of the 8/10-bit A/D converter Because this input is used as requited when the 8/10-bit A/D converter is performing input operations, and it is necessary to stop outputs by other functions unless such outputs are made intentionally.
30, 31, 33, 34, 35 to 38	32, 33, 35, 36, 37 to 40	36, 37, 38, 39, 41 to 44	38, 39, 40, 41, 43 to 46	P50, P51, P52, P53, P54 to P57	C (CMOS/H)	I/O port of an open-drain type The input function is valid when the analog input enable register is set to select a port.
				AN0, AN1, AN2, AN3, AN4 to AN7		Analog input pins of the 8/10-bit A/D converter This function is valid when the analog input enable register is set to select AD.
43 to 46	45 to 48	51 to 54	53 to 56	P60 to P63	E (CMOS/H)	General-purpose I/O port This function is always valid.
				INT0 to INT3		Request input pins of the DTP/external interrupt circuit Because this input is used as required when the DTP/external interrupt circuit is performing input operations, and it is necessary to stop outputs from other functions unless such outputs are made intentionally.
47 to 50	49 to 52	55 to 58	57 to 60	P64 to P67	E (CMOS/H)	General-purpose I/O port This function is always valid.
				ASR0 to ASR3		Sample data input pins for ICU0 to ICU3 Because this input is used as required when the input capture (ICU) is performing input operations, and it is necessary to stop outputs from other functions unless such outputs are made intentionally.
51 to 58	53 to 60	59 to 66	61 to 68	P70 to P77	E (CMOS/H)	General-purpose I/O port This function is valid when waveform output from the output compare (OCU) is disabled.
				DOT0 to DOT7		Waveform output pins of OCU0 and OCU1 This function is valid when waveform output from the output compare (OCU) is enabled and output from the port is selected.

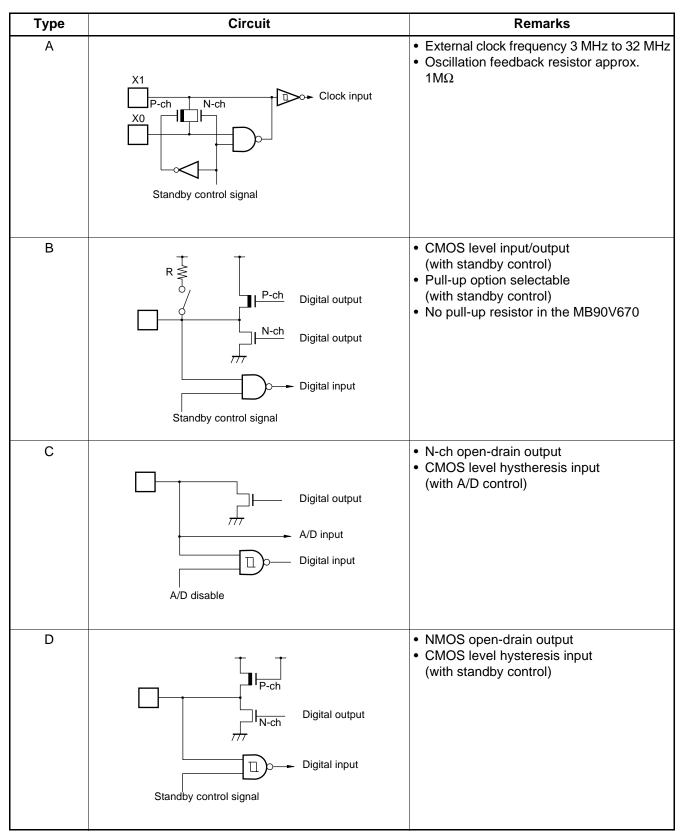
*1: FPT-80P-M05

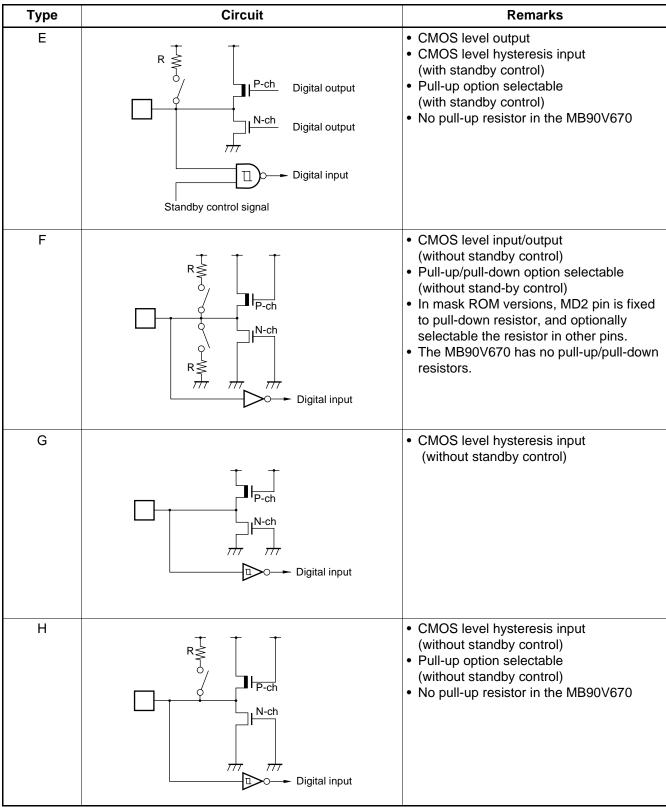
*2: FPT-80P-M06

*3: FPT-100P-M05

*4: FPT-100P-M06

	Pin	no.			Circuit	
LQFP -80*1	QFP -80*2	LQFP -100*3	QFP -100*4	Pin name	Circuit type	Function
59	61	25	27	P80	E (CMOS/H)	General-purpose I/O port This function is valid when waveform output from 8/16-bit PPG timer 1 is disabled.
				PPG1		Output pin of 8/16-bit PPG timer 1 This function is valid when waveform output from 8/16-bit PPG timer 1 is enabled.
_	_	26 to 31	28 to 33	P81 to P86	E (CMOS/H)	General-purpose I/O port This function is always valid.
		45	47	P90	D (NMOS/H)	I/O port of an open-drain type This function is always valid.
_	_			SDA		I/O pin of the I ² C interface This function is valid when operation of the I ² C interface is enabled. Hold the port output in the high-impedance status (PDR = 1) when the I ² C interface is in operation.
		46	48	P91	D (NMOS/H)	I/O port of an open-drain type This function is always valid.
_	_			SCL		Clock I/O pin of the I ² C interface This function is valid when operation of the I ² C interface is enabled. Hold the port output in the high-impedance status (PDR = 1) when the I ² C interface is in operation.
_	_	67 to 74	69 to 76	PA0 to PA7	E (CMOS/H)	General-purpose I/O port This function is always valid.
_	_	76 to 78	78 to 80	PB0 to PB2	E (CMOS/H)	General-purpose I/O port This function is always valid.
64	66	21, 82	23, 84	Vcc	Power supply	Power supply to the digital circuit
9, 32, 61	11, 34, 63	9, 40, 79	11, 42, 81	Vss	Power supply	Ground level of the digital circuit
26	28	32	34	AVcc	Power supply	Power supply to the analog circuit Make sure to turn on/turn off this power supply with a voltage exceeding AVcc applied to Vcc.
27	29	33	35	AVRH	Power supply	Reference voltage input to the analog circuit Make sure to turn on/turn off this power supply with a voltage exceeding AVRH applied to AVcc.
28	30	34	36	AVRL	Power supply	Reference voltage input to the analog circuit
29	31	35	37	AVss	Power supply	Ground level of the analog circuit


^{*1:} FPT-80P-M05


^{*2:} FPT-80P-M06

^{*3:} FPT-100P-M05

^{*4:} FPT-100P-M06

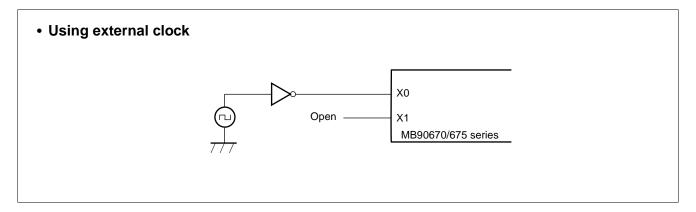
■ I/O CIRCUIT TYPE

■ HANDLING DEVICES

1. Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.


In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH) and analog input voltages not exceed the digital voltage (Vcc).

2. Connection of Unused Pins

Leaving unused pins open may result in abnormal operations. Clamp the pin level by connecting it to a pull-up or a pull-down resistor.

3. Notes on Using External Clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

4. Power Supply Pins

In products with multiple V_{CC} or V_{SS} pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However, connect the pins external power and ground lines to lower the electro-magnetic emission level and abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.

Make sure to connect Vcc and Vss pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μF between Vcc and Vss pin near the device.

5. Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.

6. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

7. Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = Vss.

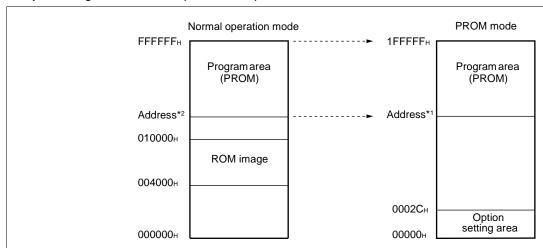
8. "MOV @AL, AH", "MOVW @AL, AH" Instructions

When the above instruction is performed to I/O space, an unnecessary writing operation (#FF, #FFFF) may be performed in the internal bus.

Use the compiler function for inserting an NOP instruction before the above instructions to avoid the writing operation.

Accessing RAM space with the above instruction does not cause any problem.

9. Initialization


In the device, there are internal registers which is initialized only by a power-on reset. To initialize these registers, turning on the power again.

■ PROGRAMMING TO THE ONE-TIME PROM ON THE MB90P673/P678

The MB90P673 and MB90P678 has a PROM mode for emulation operation of the MBM27C1000/1000A, to which writing codes by a general-purpose ROM writer can be done via a dedicated adapter. Please note that the device is not compatible with the electronic signature (device ID code) mode.

1. Writing Sequence

The memory map for the PROM mode is shown as follows. Write option data to the option setting area according by referring to "7. PROM Option Bit Map".

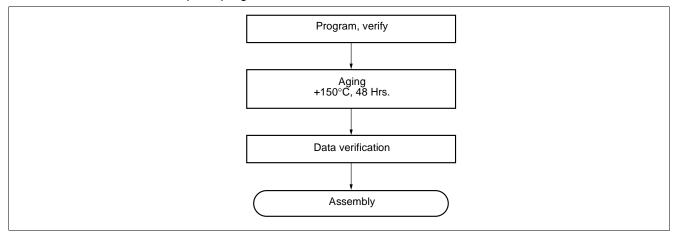
Туре	Address*1	Address*2	Number of bytes
MB90P673	14000н	FF4000 _H	48 Kbytes
MB90P678	10000н	FF0000 _H	64 Kbytes

Note: The ROM image size for bank 00 is 48 Kbytes (ROM image for between FF4000H to FFFFFFH).

Write data to the one-time PROM microcontrollers according to the following sequence.

- (1) Set the PROM programer to select the MBM27C1000/1000A.
- (2) Load the program data to the ROM programer address *1 to 1FFFFH. To select a PROM option, load the option data from 00000H to 0002CH referring to "7. PROM Option Bit Map".
- (3) Set the chip to the adapter socket and load the socket to the ROM programer. Make sure that the device and adapter socket are properly oriented.
- (4) Program from 00000н to 1FFFFн.

Notes: • In mask-ROM products, there is no PROM mode and it is impossible to read data by a ROM programer.


Contact sales personnel when purchasing a ROM programer.

2. Program Mode

In the MB90P673/P678, all the bits are set to "1" upon shipping from FUJITSU or erasing operation. To write data, set desired bit selectively to "0". However it is impossible to write electronically to the bits.

3. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening precedure for a product with a blanked One-time PROM microcomputer program.

4. Programming Yield

All bits cannnot be programmed at Fujitsu shipping test to a blanked One-time PROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannnot be assured at all times.

5. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

Part no.			MB90P673PF	MB90P673PFV	MB90P678PF	MB90P678PFV
Package			QFP-80	LQFP-80	QFP-100	LQFP-100
Compatible socket adapter Sun Hayato Co., Ltd.			ROM-80QF- 32DP-16L	ROM-80SQF- 32DP-16L	ROM-100QF- 32DP-16L	ROM-100SQF- 32DP-16L
cturer		1890A	_	_	_	Recommended
ded programmer ma nmer name	Minato Electronics Inc.	1891	_	_	_	Recommended
		1930	_	_	_	Recommended
		UNISITE	_	_	_	Recommended
	Data I/O Co., Ltd.	3900	_	_	_	Recommended
		2900	_	_	_	Recommended

Inquiry: San Hayato Co., Ltd.: TEL: (81)-3-3986-0403

FAX: (81)-3-5396-9106

Minato Electronics Inc.: TEL: USA (1)-916-348-6066

JAPAN (81)-45-591-5611

Data I/O Co., Ltd.: TEL: USA/ASIA (1)-206-881-6444

EUROPE (49)-8-985-8580

6. Pin Assignment for EPROM Mode

• MBM27C1000/1000A pin compatible

MBM27C1	1000/1000A	MB90P673/MB90P678		
Pin no.	Pin name	Pin no.	Pin name	
1	V _{PP}		MD2	
2	OE		P32	
3	A15		P17	
4	A12		P14	
5	A07		P27	
6	A06	nts.	P26	
7	A05	mer	P25	
8	A04	sign	P24	
9	A03	Refer to pin assignments.	P23	
10	A02	iid o	P22	
11	A01	fer t	P21	
12	A00	Re	P20	
13	D00		P00	
14	D01		P01	
15	D02		P02	
16	GND		Vss	

MBM27C1	1000/1000A	MB90P673/MB90P678		
Pin no.	Pin name	Pin no.	Pin name	
32	Vcc		Vcc	
31	PGM		P33	
30	N.C.		_	
29	A14		P16	
28	A13		P15	
27	A08	ıts.	P10	
26	A09	ımeı	P11	
25	A11	Refer to pin assignments.	P13	
24	A16	n as	P30	
23	A10	o pi	P12	
22	CE	fer t	P31	
21	D07	Re	P07	
20	D06		P06	
19	D05		P05	
18	D04		P04	
17	D03		P03	

Pin assignments for products not compatible with MBM27C1000/1000A

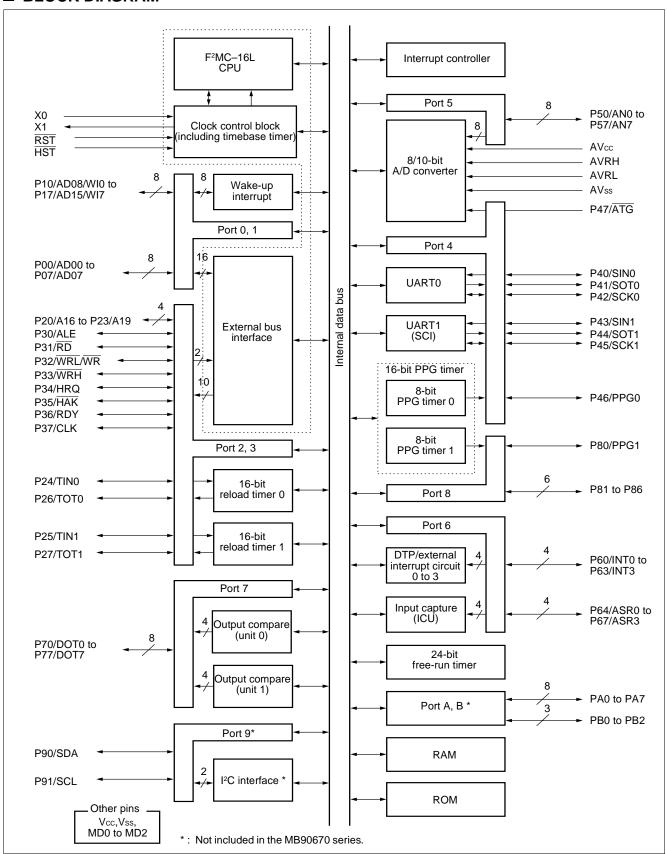
• Power supply, GND connected pin

Pin no.	Pin name	processing
	MD0 MD1 X0	Connect a pull-up resistor of 4.7 kΩ.
ants.	X1	OPEN
Refer to pin assignments	AVcc AVRH P37 P40 to P47 P50 to P57 P60 to P67 P70 to P77 P80 to P86 P90 P91 PA0 to PA7 PB0 to PB2	Connect a pull-up resistor having a resistance of approximately 1 MΩ to each pin.

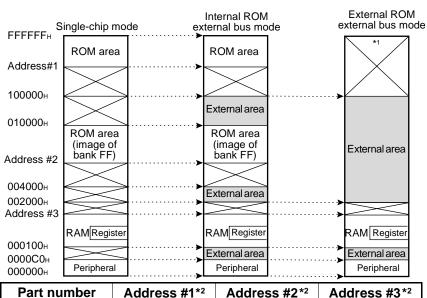
Туре	Pin no.	Pin name
Power supply	Refer to pin assignments.	HST Vcc
GND	Refer to pin assignments.	P34 P35 <u>P36</u> RST AVRL AVss Vss

Note: Only MB90675 series has P81 to P86, P90, P91, PA0 to PA7, PB0 to PB2 pins.

7. PROM Option Bit Map


Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
00000н	Vacancy	RST Pull-up 1: No 0: Yes	Vacancy	MD1 Pull-up 1: No 0: Yes	MD1 Pull-down 1: No 0: Yes	MD0 Pull-up 1: No 0: Yes	MD0 Pull-down 1: No 0: Yes	Vacancy
00004н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00008н	P17	P16	P15	P14	P13	P12	P11	P10
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
0000Сн	P27	P26	P25	P24	P23	P22	P21	P20
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00010н	P37	P36	P35	P34	P33	P32	P31	P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00014н	P47	P46	P45	P44	P43	P42	P41	P40
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
0001Сн	P67	P66	P65	P64	P63	P62	P61	P60
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00020н	P77	P76	P75	P74	P73	P72	P71	P70
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00024н	Vacancy	P86 Pull-up 1: No 0: Yes	P85 Pull-up 1: No 0: Yes	P84 Pull-up 1: No 0: Yes	P83 Pull-up 1: No 0: Yes	P82 Pull-up 1: No 0: Yes	P81 Pull-up 1: No 0: Yes	P80 Pull-up 1: No 0: Yes
00028н	PA5 Pull-up 1: No 0: Yes	PA4 Pull-up 1: No 0: Yes	PA3 Pull-up 1: No 0: Yes	PA2 Pull-up 1: No 0: Yes	PA1 Pull-up 1: No 0: Yes	PA0 Pull-up 1: No 0: Yes	Vacancy	Vacancy
0002Сн	Vacancy	Vacancy	Vacancy	PB2 Pull-up 1: No 0: Yes	PB1 Pull-up 1: No 0: Yes	PB0 Pull-up 1: No 0: Yes	PA7 Pull-up 1: No 0: Yes	PA6 Pull-up 1: No 0: Yes

Notes: • Data "1" must be programed to the reserved bits and address other than listed above.


[•] Only MB90P678 has pull-up options for P81 to P86, PA0 to PA7, and PB0 to PB2 pins.

[•] Data "1" must be programed for the MB90P673.

■ BLOCK DIAGRAM

MEMORY MAP

Part number	Address #1*2	Address #2*2	Address #3*2
MB90671	FFC000H	00С000н	000380н
MB90672	FF8000н	008000н	000780н
MB90673	FF4000н	004000н	000900н
MB90T673	_	_	000900н
MB90P673	FF4000н	004000н	000900н
MB90676	FF8000н	008000н	000780н
MB90677	FF4000н	004000н	000900н
MB90678	FF0000H	004000н	000D00н
MB90T678	_	_	000D00н
MB90P678	FF0000H	004000н	000D00н

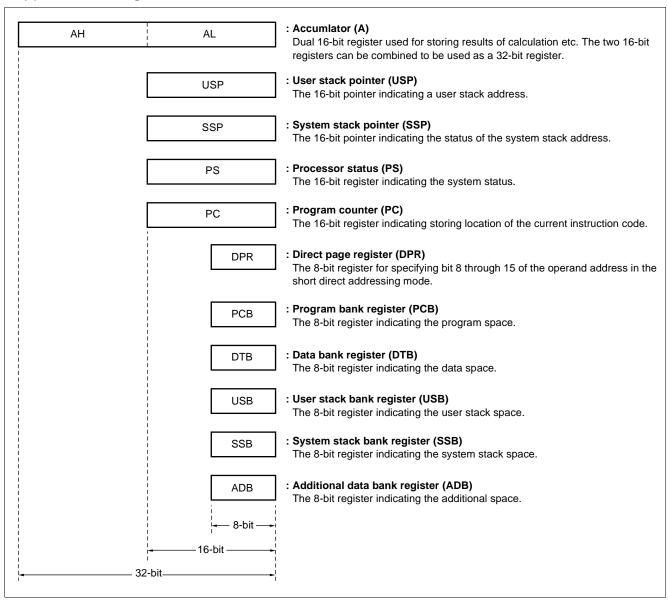
: Internal access memory

: Enternal access memory

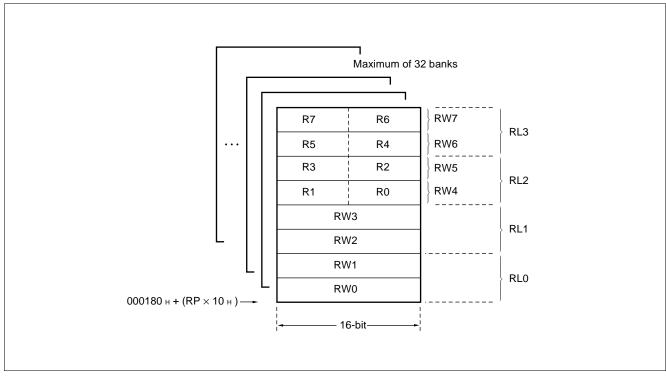
: Inhibited area

*1: The same external memory is accessed for bank 0F, 1F, 2F through FF.

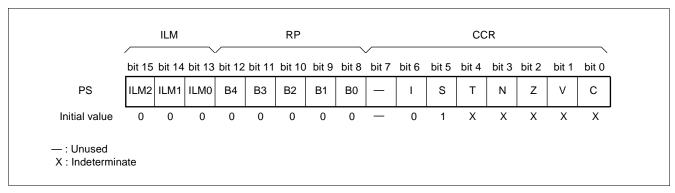
*2: Addresses #1, #2 and #3 are unique to the product type.


Notes: • The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 is assigned to the same address, enabling reference of the table on the ROM without stating "far".

However, the ROM area of the MB90678/P678 exceeds 48 Kbytes, and for this reason, the image from FF4000H to FFFFFFH is reflected on bank 00 and image from FF0000H to FF3FFFH bank FF only.


- In the MB90670/675 series, the upper 4-bit of the address are not output to the external bus. For this reason, the maximum area accessible is 1 Mbyte. The same address is accessed through different banks in different images.
- For example, accessing "A00000H" and "B00000H" accesses the same address on the external bus.
- To prevent the memory or I/O from being accessed through images, and the data from being destroyed, it is recommended to limit number of banks to a maximum of 16 so that the banks are mapped without interfering each other. Caution must be also taken when masking the upper address with the external address output control register (HACR).

■ F²MC-16L CPU PROGRAMMING MODEL


(1) Dedicated Registers

(2) General-purpose Registers

(3) Processor Status (PS)

■ I/O MAP

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value		
000000н	PDR0	Port 0 data register	R/W	Port 0	XXXXXXXX		
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXX		
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXX		
000003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXX		
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXX		
000005н	PDR5	Port 5 data register	R/W	Port 5	11111111в		
000006н	PDR6	Port 6 data register	R/W	Port 6	XXXXXXXX		
000007н	PDR7	Port 7 data register	R	Port 7	XXXXXXXX		
000008н	PDR8	Port 8 data register	R/W	Port 8*5	- X X X X X X X в		
000009н	PDR9	Port 9 data register	R/W	Port 9*5	11 в		
00000Ан	PDRA	Port A data register	R/W	Port A*5	XXXXXXXX		
00000Вн	PDRB	Port B data register	R/W	Port B*5	XXXX в		
00000Сн to 00000Ен		(Vacancy)*³					
00000Fн	EIFR	Wake-up interrupt flag register	R/W	Wake-up interrupt	Ов		
000010н	DDR0	Port 0 data direction register	R/W	Port 0	00000000в		
000011н	DDR1	Port 1 data direction register	R/W	Port 1	00000000		
000012н	DDR2	Port 2 data direction register	R/W	Port 2	00000000		
000013н	DDR3	Port 3 data direction register	R/W	Port 3	00000000		
000014н	DDR4	Port 4 data direction register	R/W	Port 4	00000000		
000015н	ADER	Analog input enable register	R/W	Port 5, analog input	11111111в		
000016н	DDR6	Port 6 data direction register	R/W	Port 6	00000000		
000017н	DDR7	Port 7 data direction register	R/W	Port 7	00000000		
000018н	DDR8	Port 8 data direction register	R/W	Port 8*5	-0000000в		
000019н		(Vacano	y)* ³				
00001Ан	DDRA	Port A data direction register	R/W	Port A*5	00000000в		
00001Вн	DDRB	Port B data direction register	R/W	Port B*5	000 B		
00001Сн to 00001Ен		(Vacancy)*3					
00001Fн	EICR	Wake-up interrupt enable register	W	Wake-up interrupt	00000000в		

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value		
000020н	UMC0	Mode control register 0	R/W!		00000100в		
000021н	USR0	Status register 0	R/W!		00010000в		
000022н	UIDR0/ UODR0	Input data register 0/ output data register 0	R/W	UART0	XXXXXXXX		
000023н	URD0	Rate and data register 0	R/W		00000000		
000024н	SMR1	Mode register 1	R/W		00000000		
000025н	SCR1	Control register 1	R/W!	UART1	00000100в		
000026н	SIDR1/ SODR1	Input data register 1/ output data register 1	R/W	(SCI)	XXXXXXXX		
000027н	SSR1	Status register 1	R/W!		00001-00в		
000028н	ENIR	DTP/interrupt enable register	R/W		0 0 0 0 в		
000029н	EIRR	DTP/interrupt factor register	R/W	DTP/external interrupt circuit	 0000в		
00002Ан	ELVR	Request level setting register	R/W	,	00000000		
00002Вн		(Vaca	ncy)*3				
00002Сн	ADCS	A/D convertor control status	R/W!	8/10-bit A/D	00000000		
00002Dн	ADCS	register	K/VV!		00000000		
00002Ен	ADCR	A/D convertor data register	R/W!*4	converter	XXXXXXX		
00002Fн	ADCK	A/D convertor data register	K/VV!		000000ХХв		
000030н	PPGC0	PPG0 operating mode control register	R/W!	8/16-bit PPG timer 0	0 – 0 0 0 0 0 1 в		
000031н	PPGC1	PPG1 operating mode control register	R/W!	8/16-bit PPG timer 1	0 0 0 0 0 0 0 0 в		
000032н 000033н		(Vacancy)*3					
000033н	PRLL0		R/W	0/40111 550	ХХХХХХХ		
000034н	PRLH0	PPG0 reload register	R/W	8/16-bit PPG timer 0	XXXXXXXX		
000035н	PRLL1		R/W	0/40111 550	XXXXXXXXB		
000030н	PRLH1	PPG1 reload register	R/W	8/16-bit PPG timer 1	XXXXXXXX		
000037н	FINLITI		17/ VV		00000000		
000039н	TMCSR0	Timer control status register 0	R/W!		ООООВ		
000039н	TMD0/	40.1%		16-bit reload timer 0	XXXXXXXX		
00003Ан	TMR0/ TMRLR0	16-bit timer register 0/ 16-bit reload register 0	R/W		XXXXXXXXB		
00003Вн 00003Сн					00000000		
00003Cн 00003Dн	TMCSR1	Timer control status register 1	R/W!	10.1.	ООООВ		
00003Бн	T. 10 ()	40 120 (2000)		16-bit reload timer 1	XXXXXXXXB		
00003Eн 00003Fн	TMR1/ TMRLR1	16-bit timer register 1/ 16-bit reload register 1	R/W	umer i	XXXXXXXXB		
UUUUSFH					(Continued		

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
000040н	IBSR	I ² C bus status register	R		00000000в
000041н	IBCR	I ² C bus control register	R/W		00000000в
000042н	ICCR	I ² C bus clock control register	R/W	I ² C interface*6	—— ОХХХХХ В
000043н	IADR	I ² C bus address register	R/W		— X X X X X X X В
000044н	IDAR	I ² C bus data register	R/W		XXXXXXXX
000045н to 00004Fн		(Vacano	cy)* ³		
000050н	TOOR	From run timer central register	R/W!	24-bit free-run	1 1 0 0 0 0 0 0 в
000051н	TCCR	Free-run timer control register	K/VV!	timer	——111111 в
000052н	ICC	ICU control register	R/W	Input capture	00000000в
000053н	100	ICO control register	IX/ V V	(ICU)	00000000
000054н	TCRL	Free-run timer lower data register	R		00000000в
000055н	TOKE	rice-ruir timer lower data register	IX	24-bit free-run timer	$0\ 0\ 0\ 0\ 0\ 0\ 0\ B$
000056н	TCRH	Free-run timer upper data register	R		00000000в
000057н	TORIT	Tree-run timer upper data register	IX		00000000в
000058н	CCR00	OCU control register 00	R/W		11110000в
000059н	CORCO	COO CONTROL TOGISTER OU	10,00	Output compare (OCU)	 0000в
00005Ан	CCR01	OCU control register 01	R/W	(unit 0)	 0000в
00005Вн	COROT	COO CONTROL TOGISTER OT	17,77		00000000
00005Сн	CCR10	OCU control register 10	R/W		11110000в
00005Dн	001(10	COO CONTROL TOGISTER TO	17,77	Output compare (OCU)	 0000в
00005Ен	CCR11	OCU control register 11	R/W	(unit 1)	 0000в
00005Fн	COLLI	ood dentier register 11			00000000
000060н	ICDR0L	ICU lower data register 0	R		XXXXXXX
000061н	IODITOL	100 lower data register o			XXXXXXX
000062н	ICDR0H	ICU upper data register 0	R		XXXXXXX
000063н	10211011	Too apport data register o			00000000в
000064н	ICDR1L	ICU lower data register 1	R	Input capture	XXXXXXX
000065н	IODICIE	100 101101 data register 1	11	(ICU)	XXXXXXX
000066н	ICDR1H	ICU upper data register 1	R		XXXXXXX
000067н	1051(111	100 appor acita rogiotor r			00000000
000068н	ICDR2L	ICU lower data register 2	R		XXXXXXX
000069н	.05.112	iono: data rogiotor 2	. `		XXXXXXX

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
00006Ан	ICDR2H	ICI Luppor data register 2	R		XXXXXXXX
00006Вн	ICDRZH	ICU upper data register 2	K		00000000
00006Сн	ICDR3L	ICU lower data register 3	R	Input capture	XXXXXXXX
00006Dн	ICDR3L	100 lower data register 5	K	(ICÚ)	XXXXXXXX
00006Ен	ICDR3H	ICU upper data register 3	R		XXXXXXXX
00006Fн	ICDRSH	100 upper data register 3	K		00000000
000070н	CPR00L	OCU compare lower data	R/W		00000000в
000071н	CFROOL	register 0	IX/VV		00000000в
000072н	CPR00H	OCU compare upper data	R/W		00000000в
000073н	CITOOII	register 0	17,77		00000000в
000074н	CPR01L	OCU compare lower data	R/W		$0\ 0\ 0\ 0\ 0\ 0\ 0\ B$
000075н	OFROIL	register 1	17,77		$0\ 0\ 0\ 0\ 0\ 0\ 0\ B$
000076н	CPR01H	OCU compare upper data	R/W		00000000в
000077н	CIROTT	register 1	17/ 77	Output compare (OCU)	$0\ 0\ 0\ 0\ 0\ 0\ 0\ B$
000078н	- CPR02L	OCU compare lower data register 2 R/W	R/M	(unit 0)	$0\;0\;0\;0\;0\;0\;0\;0$
000079н			17,77		00000000в
00007Ан	CPR02H	OCU compare upper data	R/W		00000000
00007Вн		register 2	10,00		00000000
00007Сн	CPR03I	PR03L OCU compare lower data register 3 R/W	R/M		00000000
00007Dн	OI TOOL			00000000	
00007Ен	CPR03H	OCU compare upper data	R/W		$0\ 0\ 0\ 0\ 0\ 0\ 0\ B$
00007Fн	011(03)1	register 3	10,00		00000000
000080н	CPR04L	OCU compare lower data	R/W		00000000
000081н	OI TOTE	register 4	10,00		$0\ 0\ 0\ 0\ 0\ 0\ 0\ B$
000082н	CPR04H	OCU compare upper data	R/W		00000000
000083н	O1 1(0+11	register 4	10,00		00000000
000084н	CPR05L	OCU compare lower data	R/W		$0\;0\;0\;0\;0\;0\;0\;0$
000085н	- CPRU5L	register 5	17/ / /	Output compare (OCU)	00000000в
000086н	CPR05H	OCU compare upper data	R/W	(unit 1)	00000000в
000087н	CPKUSH	register 5	IX/VV		00000000в
000088н	CPR06L	OCU compare lower data	R/W		00000000
000089н	OFIXUOL	register 6	Γ\/ V V		00000000в
00008Ан	CPR06H	OCU compare upper data	R/W		00000000в
00008Вн	0. 10011	register 6	1 1/ 7 7		00000000в

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value			
00008Сн	CPR07L	OCU compare lower data	R/W		00000000			
00008Dн	CFK07L	register 7	IX/VV	Output compare	00000000			
00008Ен	CPR07H	OCU compare upper data	R/W	(OCU) (unit 1)	00000000			
00008Fн	CFRUITI	register 7	IX/VV		00000000в			
000090н to 00009Ен		(System reservation area)*1						
00009Fн	DIRR	Delayed interrupt factor generation/ cancellation register	R/W	Delayed interrupt generation module	Ов			
0000А0н	LPMCR	Low-power consumption mode control register	R/W!	Low-power consumption (stand-by) mode	00011000в			
0000А1н	CKSCR	Clock selection register	R/W!	Low-power consumption (stand-by) mode	11111100в			
0000A2н to 0000A4н	(Vacancy)*3							
0000А5н	ARSR	Automatic ready function select register	W	External bus pin	0 0 1 1 — — 0 0 в			
0000А6н	HACR	Upper address control register	W	External bus pin	 0000в			
0000А7н	EPCR	Bus control signal select register	W	External bus pin	0000*00-в			
0000А8н	WDTC	Watchdog timer control register	R/W!	Watchdog timer	ХХХХХ111в			
0000А9н	TBTC	Timebase timer control register	R/W!	Timebase timer	1 — — О О 1 О О в			
0000AAн to 0000AFн		(Vacand	cy)*3					
0000В0н	ICR00	Interrupt control register 00	R/W!		00000111в			
0000В1н	ICR01	Interrupt control register 01	R/W!	-	00000111в			
0000В2н	ICR02	Interrupt control register 02	R/W!		00000111в			
0000ВЗн	ICR03	Interrupt control register 03	R/W!		00000111в			
0000В4н	ICR04	Interrupt control register 04	R/W!	Interrupt	00000111в			
0000В5н	ICR05	Interrupt control register 05	R/W!	controller	00000111в			
0000В6н	ICR06	Interrupt control register 06	R/W!		00000111в			
0000В7н	ICR07	Interrupt control register 07	R/W!		00000111в			
0000В8н	ICR08	Interrupt control register 08	R/W!		00000111в			
0000В9н	ICR09	Interrupt control register 09	R/W!		00000111в			

Address	Abbreviated register name	Register name	Read/ write	Resource name	Initial value
0000ВАн	ICR10	Interrupt control register 10	R/W!	Interrupt controller	00000111в
0000ВВн	ICR11	Interrupt control register 11	R/W!		00000111в
0000ВСн	ICR12	Interrupt control register 12	R/W!		00000111в
0000ВDн	ICR13	Interrupt control register 13	R/W!		00000111в
0000ВЕн	ICR14	Interrupt control register 14	R/W!		00000111в
0000ВFн	ICR15	Interrupt control register 15	R/W!		00000111в
0000С0н to 0000FFн	(External area)*2				

Descriptions for read/write

R/W: Readable and writable

R: Read only W: Write only

R/W!: Bits for reading operation only or writing operation only are included. Refer to the register lists for specific resource for detailed information.

Descriptions for initial value

- 0: The initial value of this bit is "0".
- 1: The initial value of this bit is "1".
- *: The initial value of this bit is "1" or "0" (decided by levels on pins of MD0 through MD2).
- X: The initial value of this bit is indeterminate.
- : This bit is not used. The initial value is indeterminate.
- *1: Access prohibited.
- *2: This area is the only external access area having an address of 0000FF_H or lower. An access operation to this area is handled as that to external I/O area.
- *3: The area corresponding to the "(Vacancy)" on the I/O map is reserved, and accessing operation to this area is handled as that to internal area. No access signal to external devices are generated.
- *4: Only bit 15 is writable. Reading bit 10 through bit 15 returns "0" as a reading result.
- *5: In the MB90670 series, P81 through P86, P90, P91, PA0 through PA7, PB0 through PB2 are not present. For this reason, bits corresponding to these pins are not used.
- *6: The MB90670 series does not have the I²C interface. For this reason, this area is "(Vacancy)" in the MB90670 series.

Note: For bits that is only allowed to program, the initial value set by the reset operation is listed as an initial value. Note that the values are different from reading results.

For LPMCR/CKSCR/WDTC, there are cases where initialization is performed or not performed, depending on the types of the reset. However initial value for resets that initializes the value are listed.

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Intermed a compa	El ² OS	In	terrup	t vector	Interrupt co	ontrol register	Dui - ui4- v*4
Interrupt source	support	Nun	nber	Address	ICR	Address	Priority*4
Reset	×	# 08	08н	FFFFDCH	_	_	High
INT9 instruction	×	# 09	09н	FFFFD8 _H	_	_	
Exception	×	# 10	0Ан	FFFFD4 _H	_	_	
DTP/external interrupt circuit Channel 0	\triangle	# 11	0Вн	FFFFD0 _H	- ICR00	0000В0н*2	
DTP/external interrupt circuit Channel 1	\triangle	# 12	0Сн	FFFFCCH	ICRUU	0000B0H ²	
DTP/external interrupt circuit Channel 2	\triangle	# 13	0Дн	FFFFC8 _H	ICR01	0000В1н*²	
DTP/external interrupt circuit Channel 3	\triangle	# 14	0Ен	FFFFC4 _H	ICKUI	0000BTH =	
Output compare Channel 0	\triangle	# 15	0Гн	FFFFC0 _H	ICR02	000000 *2	
Output compare Channel 1	\triangle	# 16	10н	FFFFBCH	- ICRUZ	0000B2н*²	
Output compare Channel 2	\triangle	# 17	11н	FFFFB8 _H			
Output compare Channel 3	\triangle	# 18	12н	FFFFB4 _H	ICR03	0000B3н* ²	
Output compare Channel 4	\triangle	# 19	13н	FFFFB0 _H			
Output compare Channel 5	\triangle	# 20	14н	FFFFACH	ICR04	0000В4н*2	
Output compare Channel 6	\triangle	# 21	15н	FFFFA8 _H			+
Output compare Channel 7	\triangle	# 22	16н	FFFFA4 _H	ICR05	0000B5н*²	
24-bit free-run timer Overflow	\triangle	# 23	17 H	FFFFA0 _H			
24-bit free-run timer Intermediate bit	\triangle	# 24	18н	FFFF9C _H	ICR06	0000В6н*2	
Input capture Channel 0	\triangle	# 25	19н	FFFF98 _H	10007	000007 #3	
Input capture Channel 1	\triangle	# 26	1Ан	FFFF94 _H	ICR07	0000В7н* ²	
Input capture Channel 2	\triangle	# 27	1Вн	FFFF90 _H	IODoo	000000 *2	
Input capture Channel 3	\triangle	# 28	1Сн	FFFF8C _H	ICR08	0000В8н*2	
16-bit reload timer/ 8/16-bit PPG timer 0	\triangle	# 29	1Dн	FFFF88 _H	ICDOO	000000 *2 *2	
16-bit reload timer/ 8/16-bit PPG timer 1	\triangle	# 30	1Ен	FFFF84 _H	- ICR09	0000B9н* ^{2, *3}	
8/10-bit A/D converter measurement complete	0	# 31	1F _H	FFFF80 _H	ICR10	0000ВАн	
Wake-up interrupt	×	# 33	21н	FFFF78 _H	ICR11	0000BBн*2	
Timebase timer interval interrupt	×	# 34	22н	FFFF74 _H	IONTI	UUUUBBH -	Low

(Continued)

(Continued)

Interrupt source	El ² OS	In	terrup	tvector	Interrupt regi	Priority*4				
,	support	Nun	nber	Address	Address ICR Address					
UART1 (SCI) transmission complete	\triangle	# 35	23н	FFFF70H	ICR12	0000BCн*2	High			
UART0 transmission complete	\triangle	# 36	24н	FFFF6C _H			A			
UART1 (SCI) reception complete	0	# 37	25н	FFFF68 _H	ICR13	0000BDн*²				
I ² C interface*1	×	# 38	26н	FFFF64 _H	ICKTS	UUUUDDH -				
UART0 reception complete	0	# 39	27н	FFFF60 _H	ICR14	0000ВЕн	•			
Delayed interrupt generation module	×	# 42	2Ан	FFFF54 _H	ICR15	0000ВFн	Low			

○ : Can be used

× : Can not be used

○ : Can be used. With El²OS stop function.

△ : Can be used if interrupt request using ICR are not commonly used.

- *1: In MB90670 series, this interrupt vector is not used because the series does not have the I²C interface.
- *2: Interrupt levels for peripherals that commonly use the ICR register are in the same level.
 - When the extended intelligent I/O service (EI²OS) is specified in a peripheral device commonly using the ICR register, only one of the functions can be used.
 - When the extended intelligent I/O service (EI²OS) is specified for one of the peripheral functions, interrupts can not be used on the other function.
- *3: Only 16-bit reload timer conforms to the extended intelligent I/O service (El²OS). Because the 8/16-bit PPG timer does not conform to the extended intelligent I/O service (El²OS), disable interrupts of the 8/16-bit PPG timer when using the extended intelligent I/O service (El²OS) in the 16-bit reload timer.
- *4: The level shows priority of same level of interrupt invoked simultaneously.

■ PERIPHERALS

1. I/O Port

(1) Input/output Port

Port 0 to 4, 6, 8, A, and B are general-purpose I/O ports having a combined function as an external bus pin and a resource input. The input output ports function as general-purpose I/O port only in the single-chip mode. In the external bus mode, the ports are configured as external bus pins, and part of pins for port 3 can be configured as general-purpose I/O port by setting the bus control signal select register (ECSR). Each pin corresponding to upper 4-bit of the port 2 can be switched between a resource and a port bitwise.

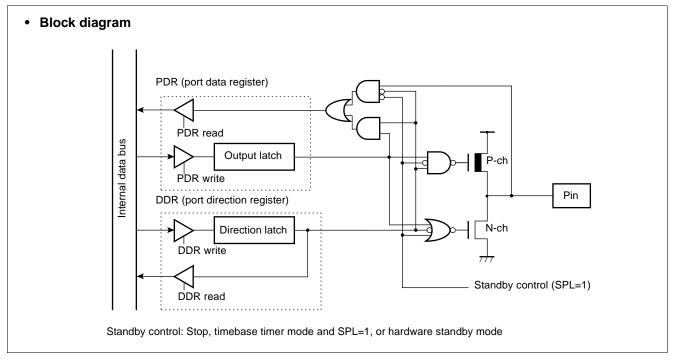
Only MB90675 series has port A and port B.

· Operation as output port

The pin is configured as an output port by setting the corresponding bit of the DDR register to "1". Writing data to PDR register when the port is configured as output, the data is retained in the output latch in the PDR and directly output to the pin.

The value of the pin (the same value retained in the output latch of PDR) can be read out by reading the PDR register.

Note: When a read-modify-write instruction (e.g. bit set instruction) is performed to the port data register, the destination bit of the operation is set to the specified value, not affecting the bits configured by the DDR register for output, however, values of bits configured by the DDR register as inputs are changed because input values to the pins are written into the output latch. To avoid this situation, configure the pins by the DDR register as output after writing output data to the PDR register when configuring the bit used as input as outputs.


Operation as input port

The pin is configured as an input by setting the corresponding bit of the DDR register to "0".

When the pin is configured as an input, the output buffer is turned-off and the pin is put into a high-impedance status.

When a data is written into the PDR register, the data is retained in the output latch of the PDR, but pin outputs are unaffected.

Reading the PDR register reads out the pin level ("0" or "1").

(2) N-ch Open-drain Port

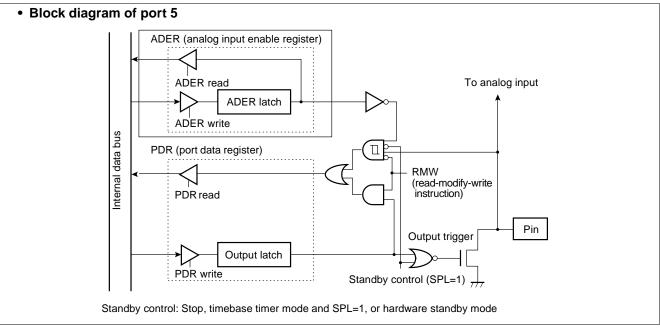
Port 5 and port 9 are general-purpose I/O ports having a combined function as resource input/output. Each pin can be switched between resource and port bitwise.

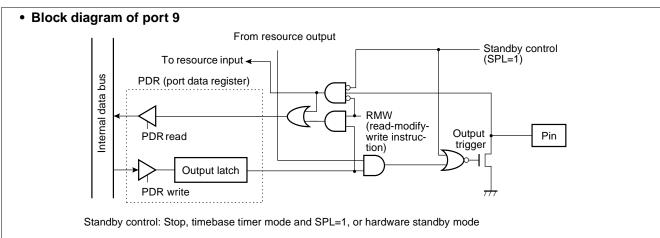
Only MB90675 series has port 9.

· Operation as output port

When a data is written into the PDR register, the data is latched to the output latch of PDR. When the output latch value is set to "0", the output transistor is turned on and the pin status is put into an "L" level output, while writing "1" turns off the transistor and put the pin in a high-impedance status.

If the output pin is pulled-up, setting output latch value to "1" puts the pin in the pull-up status.


Reading the PDR register returns the pin value (same as the output latch value in the PDR).


Note: Execution of a read-modify-write instruction (e.g. bit set instruction) reads out the output latch value rather than the pin value, leaving output latch that is not manipulated unchanged.

· Operation as input port

Setting corresponding bit of the PDR register to "1" turns off the output transistor and the pin is put into a high-impedance status.

Reading the PDR register returns the pin level ("0" or "1").

(3) Output Port

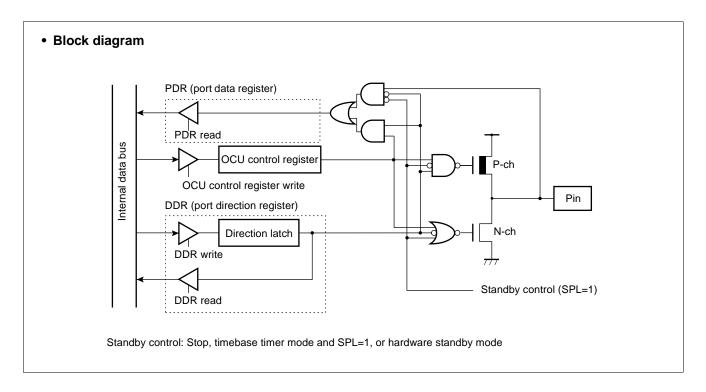
Port 7 is a general-purpose output port having a combined function as an output compare (OCU) output. Note that only OCU output can be output when the pin is configured as an output, and it is not used for outputting given data by writing to the data register. Each pin can be switched between an output compare output and a port bitwise.

Operation as output port (operation of OCU output)
 Setting the corresponding bit of the DDR register to "1" configures the pin as an output port. In this case, lower 4-bit of CCR01 and CCR register are output.

When configured as an output, the output buffer is turned on and data retained in the output latch in the PDR of the output compare is output to the pin.

Writing data to DOT bit of the OCU control register (CCR01, CCR11) corresponding to each pin writes data in synchronization to a match operation of the output compare and output to the pin.

Reading the PDR register returns the pin level (same as the output latch value of the PDR).


When output of output compare is enabled, an output value from the output compare can be read out.

· Operation as input port

Setting corresponding bit of the DDR register to "0" configures the pin as input port.

When the pin is configured as an input port, the output buffer is turned off and the pin is put into a high-impedance status.

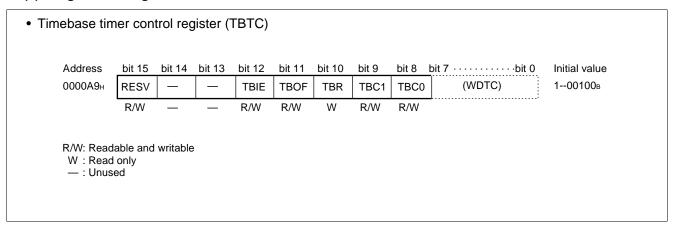
Reading the PDR register returns the pin level ("0" or "1").

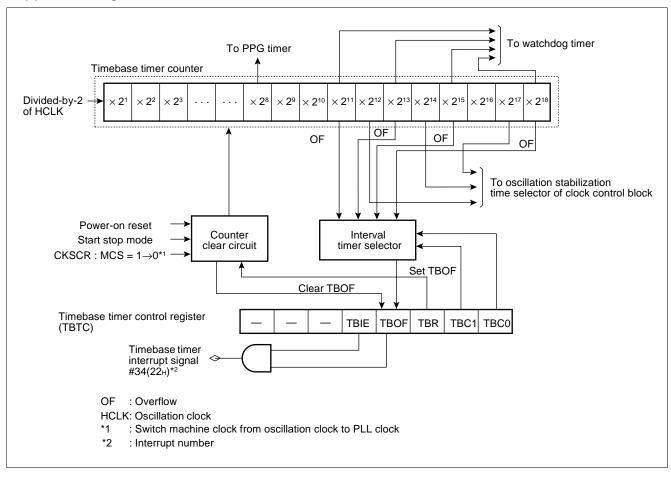
(4) Register Configuration

Address	bit 15 · · · · · · ·	· · · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
00000н	(PDR1)		P07	P06	P05	P04	P03	P02	P01	P00	Port 0 data register (PDR0)
	·		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15 bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7.		· · · bit 0	Dowt 4 data wawiata
000001н	P17 P16	P15	P14	P13	P12	P11	P10		(PDR0)		Port 1 data register (PDR1)
	R/W R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address	bit 15	···bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Dort O data registes
000002н	(PDR3)		P27	P26	P25	P24	P23	P22	P21	P20	Port 2 data register (PDR2)
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15 bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7		··· bit 0	Dort 2 data register
000003н	P37 P36	P35	P34	P33	P32	P31	P30		(PDR2)		Port 3 data register (PDR3)
	R/W R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address	bit 15 · · · · · · ·	···bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Deat A data as at at a
000004н	(PDR5)		P47	P46	P45	P44	P43	P42	P41	P40	Port 4 data register (PDR4)
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15 bit 14	bit 13	bit 12	bit 11	l bit 10) bit 9	bit 8	bit 7·		· · · bit 0	Dowl 5 data was state
000005н	P57 P56	P55	P54	P53	P52	P51	P50		(PDR4)		Port 5 data register (PDR5)
	R/W R/W		R/W	R/W	R/W	R/W	R/W				
Address	bit 15 · · · · · · ·	···bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Port 6 data register
000006н	(PDR7)		P67	P66	P65	P64	P63	P62	P61	P60	(PDR6)
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15 bit 14	bit 13	bit 12	bit 11	bit 10) bit 9	bit 8	bit 7.		· · · bit 0	Port 7 data register
000007н	P77 P76	P75	P74	P73	P72	P71	P70		(PDR6)		(PDR7)
	R/W R/W	R/W	R/W	R/W	R/W	R/W	R/W				
	bit 15 · · · · · · ·	···bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Port 8 data register
н800000	(PDR9)		_	P86	P85	P84	P83	P82	P81	P80	(PDR8)
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15 bit 14	bit 13	bit 12	bit 11	l bit 10		bit 8	bit 7·			Port 9 data register
000009н		<u> </u>				P91			(PDR8)		(PDR9)
	R/W R/W	R/W	R/W	R/W							
	bit 15 · · · · · · ·			bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Port A data registe
00000Ан	(PDRB)	L	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	(PDRA)
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15 bit 14	bit 13	bit 12	bit 11		1	bit 8	bit 7.			Port B data registe
00000Вн		_	-	-	PB2	PB1	PB0		(PDRA))	(PDRB)

(Continued)

(Continued)

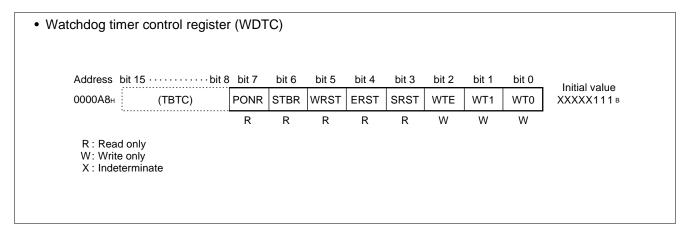

(DDR1) 5 bit 14 P16 7 R/W (DDR3) 5 bit 14 P36 7 R/W (ADER) 5 bit 14 P56 7 R/W	bit 13 P15 R/W bit 13 bit 13 P35 R/W bit 13 P35 R/W bit 13 P55	P14 R/W bit 7 P27 R/W bit 12 P34 R/W bit 7 P47 R/W	P13 R/W bit 6 P26 R/W bit 11 P33 R/W bit 6 P46 R/W	P12 R/W bit 5 P25 R/W bit 10 P32 R/W bit 5 P45 R/W bit 10	P11 R/W bit 4 P24 R/W bit 9 P31 R/W bit 4 P44 R/W	P23 R/W bit 8 P30 R/W bit 3 P43 R/W	bit 2 P22 R/W bit 7. bit 2 P42 R/W	P01 R/W (DDR0 bit 1 P21 R/W (DDR2 bit 1 P41 R/W	bit 0 P20 R/W bit 0	Port 0 data direction reginal (DDR0) Port 1 data direction reginal (DDR1) Port 2 data direction reginal (DDR2) Port 3 data direction reginal (DDR3) Port 4 data direction reginal (DDR4)
P16 / R/W (DDR3) 5 bit 14 P36 / R/W (ADER) 5 bit 14 P56	P15 R/Wbit 8 bit 13 P35 R/Wbit 8 bit 13 P55	bit 12 P14 R/W bit 7 P27 R/W bit 12 P34 R/W bit 7 P47 R/W bit 12	bit 11 P13 R/W bit 6 P26 R/W bit 11 P33 R/W bit 6 P46 R/W bit 11	bit 10 P12 R/W bit 5 P25 R/W bit 10 P32 R/W bit 5 P45 R/W bit 10	bit 9 P11 R/W bit 4 P24 R/W bit 9 P31 R/W bit 4 P44 R/W	bit 8 P10 R/W bit 3 P23 R/W bit 8 P30 R/W bit 3 P43 R/W	bit 2 P22 R/W bit 7. bit 2 P42 R/W	bit 1 P21 R/W (DDR2	bit 0 P20 R/W bit 0 bit 0 P40	Port 2 data direction reginal (DDR2) Port 3 data direction reginal (DDR3) Port 4 data direction reginal (DDR3)
P16 / R/W (DDR3) 5 bit 14 P36 / R/W (ADER) 5 bit 14 P56	P15 R/Wbit 8 bit 13 P35 R/Wbit 8 bit 13 P55	P14 R/W bit 7 P27 R/W bit 12 P34 R/W bit 7 P47 R/W bit 12	P13 R/W bit 6 P26 R/W bit 11 P33 R/W bit 6 P46 R/W bit 11	P12 R/W bit 5 P25 R/W bit 10 P32 R/W bit 5 P45 R/W bit 10	P11 R/W bit 4 P24 R/W bit 9 P31 R/W bit 4 P44 R/W	P10 R/W bit 3 P23 R/W bit 8 P30 R/W bit 3 P43 R/W	bit 2 P22 R/W bit 7. bit 2 P42 R/W	bit 1 P21 R/W (DDR2 bit 1 P41	bit 0 P20 R/W bit 0) bit 0 P40	Port 2 data direction reginal (DDR2) Port 3 data direction reginal (DDR3) Port 4 data direction reginal (DDR3)
(DDR3) 5 bit 14 P36 (ADER) 5 bit 14 P56	R/W bit 13 P35 R/W bit 13 P55	R/W bit 7 P27 R/W bit 12 P34 R/W bit 7 P47 R/W bit 12	R/W bit 6 P26 R/W bit 11 P33 R/W bit 6 P46 R/W bit 11	R/W bit 5 P25 R/W bit 10 P32 R/W bit 5 P45 R/W bit 10	R/W bit 4 P24 R/W bit 9 P31 R/W bit 4 P44 R/W	R/W bit 3 P23 R/W bit 8 P30 R/W bit 3 P43 R/W	bit 2 P22 R/W bit 7. bit 2 P42 R/W	bit 1 P21 R/W (DDR2 bit 1 P41	bit 0 P20 R/W bit 0 bit 0 P40	Port 2 data direction reginal (DDR2) Port 3 data direction reginal (DDR3) Port 4 data direction reginal (DDR3)
(DDR3) 5 bit 14 P36 7 R/W (ADER) 5 bit 14 P56	bit 13 P35 R/W bit 8 bit 13 P55	bit 7 P27 R/W bit 12 P34 R/W bit 7 P47 R/W bit 12	bit 6 P26 R/W bit 11 P33 R/W bit 6 P46 R/W bit 11	bit 5 P25 R/W bit 10 P32 R/W bit 5 P45 R/W bit 10	P24 R/W bit 9 P31 R/W bit 4 P44 R/W	P23 R/W bit 8 P30 R/W bit 3 P43 R/W	bit 2 P22 R/W bit 7 bit 2 P42 R/W	P21 R/W(DDR2 bit 1 P41	P20 R/W bit 0 bit 0 P40	(DDR2) Port 3 data direction regi (DDR3) Port 4 data direction regi
(DDR3) 5 bit 14 P36 7 R/W (ADER) 5 bit 14 P56	bit 13 P35 R/Wbit 8 bit 13 P55	P27 R/W bit 12 P34 R/W bit 7 P47 R/W bit 12	P26 R/W bit 11 P33 R/W bit 6 P46 R/W bit 11	P25 R/W bit 10 P32 R/W bit 5 P45 R/W bit 10	P24 R/W bit 9 P31 R/W bit 4 P44 R/W	P23 R/W bit 8 P30 R/W bit 3 P43 R/W	P22 R/W bit 7·· bit 2 P42 R/W	P21 R/W(DDR2 bit 1 P41	P20 R/W bit 0 bit 0 P40	(DDR2) Port 3 data direction regi (DDR3) Port 4 data direction regi
5 bit 14 P36 R/W (ADER) 5 bit 14 P56	bit 13 P35 R/W ··bit 8 bit 13 P55	R/W bit 12 P34 R/W bit 7 P47 R/W bit 12	R/W bit 11 P33 R/W bit 6 P46 R/W bit 11	R/W bit 10 P32 R/W bit 5 P45 R/W bit 10	R/W bit 9 P31 R/W bit 4 P44 R/W	R/W bit 8 P30 R/W bit 3 P43 R/W	R/W bit 7··· bit 2 P42 R/W	R/W (DDR2 bit 1	R/W bit 0) bit 0 P40	(DDR2) Port 3 data direction regi (DDR3) Port 4 data direction regi
P36 / R/W (ADER) 5 bit 14 P56	P35 R/Wbit 8 bit 13 P55	bit 12 P34 R/W bit 7 P47 R/W bit 12	bit 11 P33 R/W bit 6 P46 R/W bit 11	P32 R/W bit 5 P45 R/W bit 10	P31 R/W bit 4 P44 R/W	bit 8 P30 R/W bit 3 P43 R/W	bit 2 P42 R/W	(DDR2	bit 0 bit 0 P40	(DDR3) Port 4 data direction regi
P36 / R/W (ADER) 5 bit 14 P56	P35 R/Wbit 8 bit 13 P55	P34 R/W bit 7 P47 R/W bit 12	P33 R/W bit 6 P46 R/W bit 11	P32 R/W bit 5 P45 R/W bit 10	P31 R/W bit 4 P44 R/W	P30 R/W bit 3 P43 R/W	bit 2 P42 R/W	(DDR2 bit 1 P41	bit 0	(DDR3) Port 4 data direction regi
(ADER) 5 bit 14 P56	R/W bit 8 bit 13 P55	R/W bit 7 P47 R/W bit 12	R/W bit 6 P46 R/W bit 11	R/W bit 5 P45 R/W	R/W bit 4 P44 R/W	R/W bit 3 P43 R/W	bit 2 P42 R/W	bit 1	bit 0	(DDR3) Port 4 data direction regi
(ADER) 5 bit 14 P56	bit 13	P47 R/W bit 12	bit 6 P46 R/W bit 11	bit 5 P45 R/W bit 10	bit 4 P44 R/W	bit 3 P43 R/W	bit 2 P42 R/W	bit 1 P41	bit 0 P40	
(ADER) 5 bit 14 P56	bit 13	P47 R/W bit 12	P46 R/W bit 11	P45 R/W I bit 10	P44 R/W	P43 R/W	P42 R/W	P41	P40	
5 bit 14	bit 13	R/W bit 12	R/W bit 11	R/W I bit 10	R/W	R/W	R/W			
5 bit 14	bit 13	bit 12	bit 11	l bit 10				R/W	R/W	
P56	P55	1	1	1	bit 9	bit 8				
		P54	P53	DEO			_ bit 7		bit 0	
/ R/W	DAM		1	P52	P51	P50		(DDR4)	Analog input enable regis (ADER)
	R/W	R/W	R/W	R/W	R/W	R/W				
	··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
(DDR7)		P67	P66	P65	P64	P63	P62	P61	P60	Port 6 data direction reginate (DDR6)
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
5 bit 14	bit 13	bit 12	bit 11	l bit 10	bit 9	bit 8	bit 7⋅⋅		· · · bit 0	
P76	P75	P74	P73	P72	P71	P70				Port 7 data direction reging (DDR7)
/ R/W	R/W	R/W	R/W	R/W	R/W	R/W				
	··bit 8_	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
(Vacancy)	.	_	P86	P85	P84	P83	P82	P81	P80	Port 8 data direction reginate (DDR8)
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	(22110)
	··bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
(DDRB)		PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	Port A data direction regi (DDRA)
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	, -···· <i>,</i>
5 bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7⋅⋅		· · · bit 0	
-	-	-	-	PB2	PB1	PB0		(DDRA)	Port B data direction regi (DDRB)
' R/W	R/W	R/W	R/W	R/W	R/W	R/W	_			,
	5 bit 14 P76 V R/W (Vacancy) (DDRB) 5 bit 14	5 bit 14 bit 13 P76 P75 W R/W R/W bit 8 (Vacancy) bit 8 (DDRB) 5 bit 14 bit 13 — — W R/W R/W	R/W 5 bit 14 bit 13 bit 12 P76 P75 P74 V R/W R/W R/W R/W bit 8 bit 7 (Vacancy) — R/W bit 8 bit 7 (DDRB) PA7 R/W 5 bit 14 bit 13 bit 12 — V R/W R/W R/W R/W 890675 series has P81 throses	R/W R/W 5 bit 14 bit 13 bit 12 bit 11 P76 P75 P74 P73 V R/W R/W R/W R/W R/W bit 8 bit 7 bit 6 (Vacancy) — P86 R/W R/W R/W R/W Bit 7 bit 6 (DDRB) PA7 PA6 R/W R/W R/W R/W R/W R/W R/W R/W	R/W R/W R/W R/W 5 bit 14 bit 13 bit 12 bit 11 bit 10 6 P76 P75 P74 P73 P72 V R/W R/W R/W R/W R/W bit 8 bit 7 bit 6 bit 5 (Vacancy) — P86 P85 R/W R/W R/W R/W bit 8 bit 7 bit 6 bit 5 (DDRB) PA7 PA6 PA5 R/W R/W R/W R/W 5 bit 14 bit 13 bit 12 bit 11 bit 10 — — — — PB2 / R/W R/W R/W R/W 890675 series has P81 through P86, P90, F	R/W R/W <td> R/W R/W R/W R/W R/W R/W S bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 </td> <td>R/W R/W R/W<td>R/W R/W R/W<td> R/W R/W</td></td></td>	R/W R/W R/W R/W R/W R/W S bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8	R/W R/W <td>R/W R/W R/W<td> R/W R/W</td></td>	R/W R/W <td> R/W R/W</td>	R/W R/W


2. Timebase Timer

The timebase timer is a 18-bit free-run counter (timebase counter) for counting up in synchronization to the internal count clock (divided-by-2 of oscillation) with an interval timer function for selecting an interval time from four types of 2¹²/HCLK, 2¹⁴/HCLK, 2¹⁶/HCLK, and 2¹⁹/HCLK.

The timebase timer also has a function for supplying operating clocks for the timer output for the oscillation stabilization time or the watchdog timer etc.

(1) Register Configuration



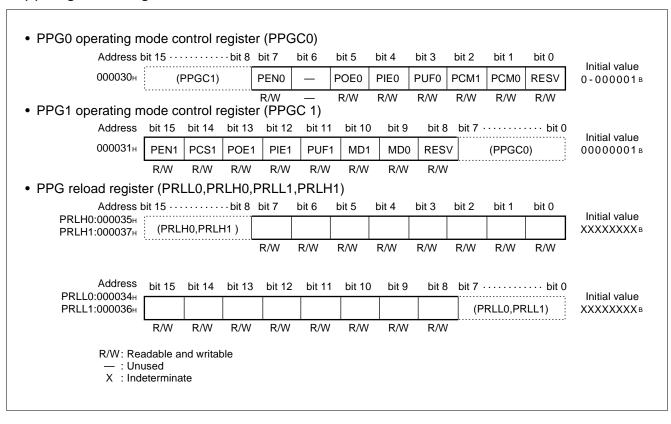


3. Watchdog Timer

The watchdog timer is a 2-bit counter operating with an output of the timebase timer and resets the CPU when the counter is not cleared for a preset period of time.

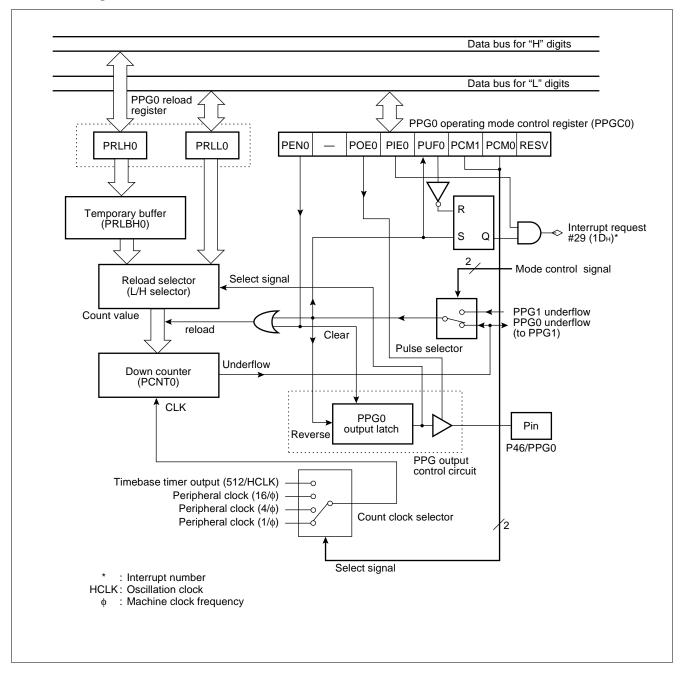
(1) Register Configuration

4. 8/16-bit PPG Timer

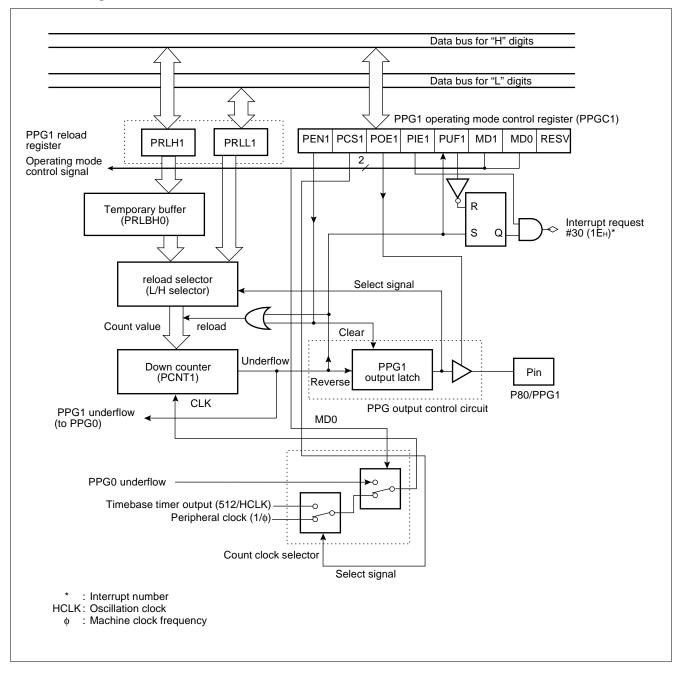

The 8/16-bit PPG timer is 2-channel reload timer module for outputting pulse having given frequencies/duty ratios.

The two modules performs the following operation by combining functions.

- 8-bit PPG output 2-channel independent operation mode
 This is a mode for operating independent 2-channel 8-bit PPG timer, in which PPG0 and PPG1 pins correspond to outputs from PPG0 and PPG1 respectively.
- 16-bit PPG output operation mode
 In this mode, PPG0 and PPG1 are combined to be operated as a 1-channel 8/16-bit PPG timer operating as a 16-bit timer. Because PPG0 and PPG1 outputs are reversed by an underflow from PPG1 outputting the same output pulses from PPG0 and PPG1 pins.
- 8 + 8-bit PPG output operation mode
 In this mode, PPG0 is operated as an 8-bit prescaler, in which an underflow output of PPG0 is used as a clock source for PPG1. A toggle output of PPG0 and PPG output of PPG1 are output from PPG0 and PPG1 respectively.


The module can also be used as a D/A converter with an external add-on circuit.

(1) Register Configuration



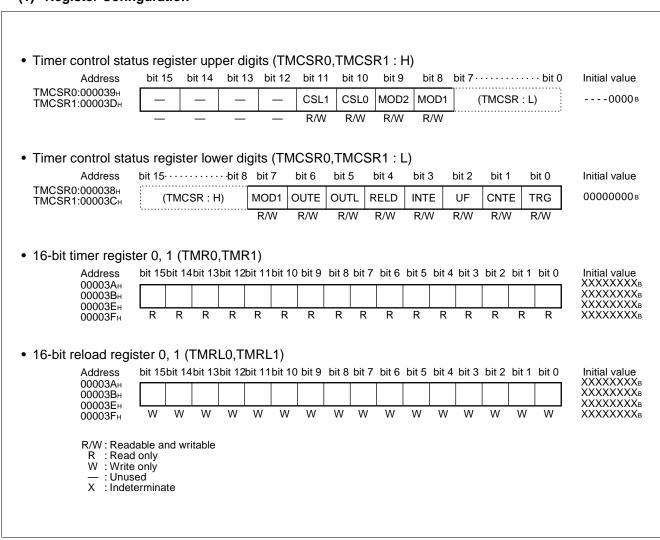
(2) Block Diagram

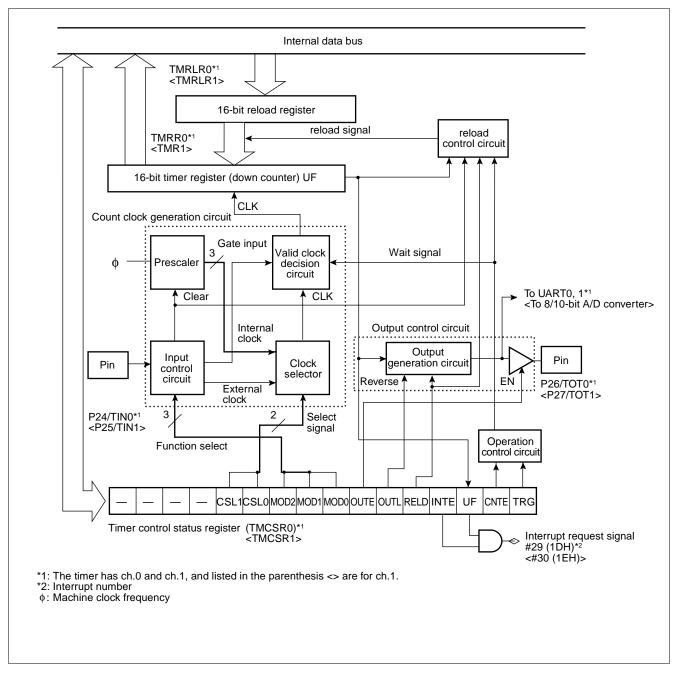
• Block diagram of 8/16-bit PPG timer 0

• Block diagram of 8/16-bit PPG timer 1

5. 16-bit Reload Timer

The 16-bit reload timer has an internal clock mode for counting down in synchronization to three types of internal clocks and an event count mode for counting down detecting a given edge of the pulse input to the external bus pin, and either of the two functions can be selectively used.

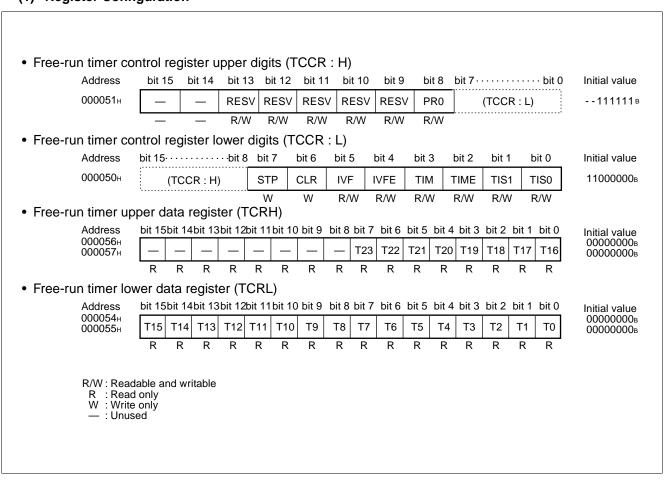

For this timer, an "underflow" is defined as the counter value of "0000H" to "FFFFH". According to this definition, an underflow occurs after [reload register setting value + 1] counts.

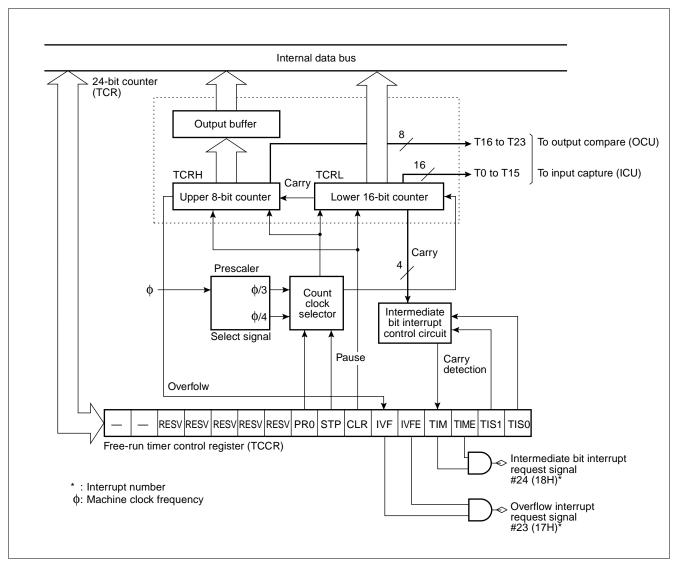

In operating the counter, the reload mode for repeating counting operation after reloading a counter setting value after an underflow or the one-shot mode for stopping the counting operation after an underflow can be selectively used.

Because the timer can generate an interrupt upon an underflow, the timer conforms to the extended intelligent I/O service (EI²OS).

The MB90670/675 series has 2 channels of 16-bit reload timers.

(1) Register Configuration

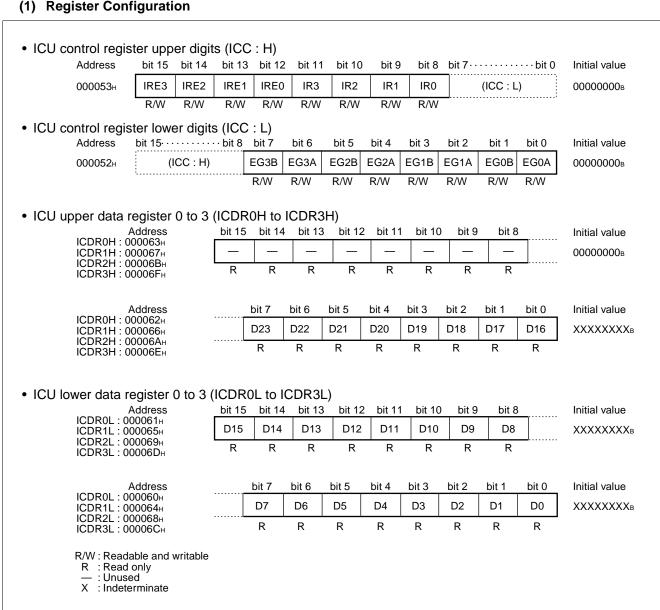


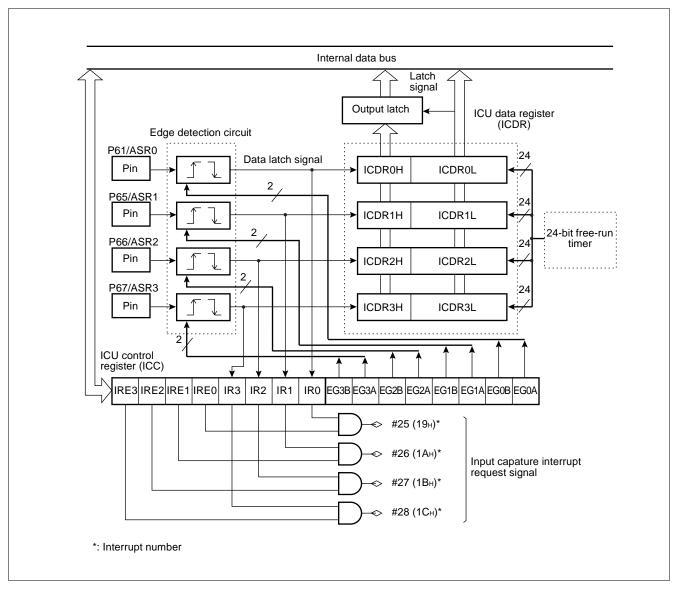

6. 24-bit Free-run Timer

The 24-bit free-run timer is a 24-bit up counter for counting up in synchronization to divided-by-3 or divided-by-4 of the machine clock, in which an interrupt factor can be selected from the overflow interrupt and four types of timer intermediate bit interrupt to be operated as an interval timer.

The free-run timer can be used to generating reference timing signals for the input capture (ICU) and output compare (OCU).

(1) Register Configuration

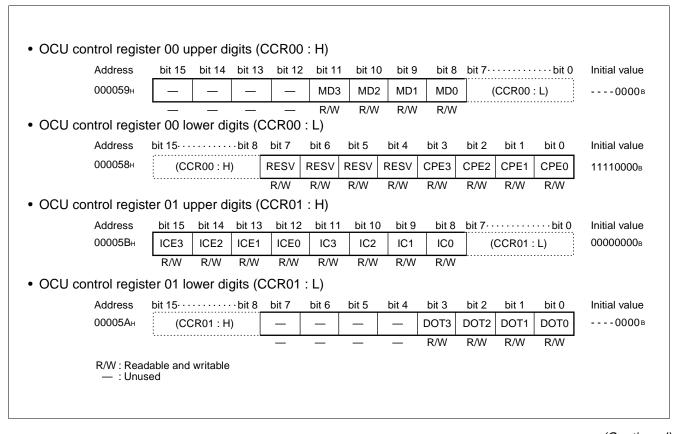

7. Input Capture (ICU)


The input capture (ICU) generates an interrupt request to the CPU simultaneously with a storing operation of current counter value of the 24-bit free-run timer to the ICU data register (ICDR) upon an input of a trigger edge to the external pin.

There are four sets (four channels) of the input capture external pins and ICU data registers (ICDR), enabling measurements of maximum of four events.

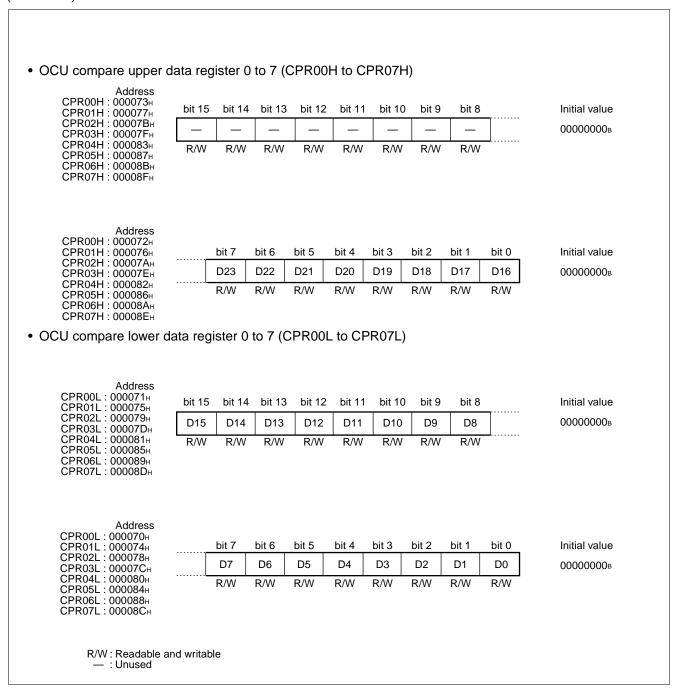
- The input capture has four sets of external input pins (ASR0 to ASR3) and ICU registers (ICDR), enabling measurements of maximum of four events.
- A trigger edge direction can be selected from rising/falling/both edges.
- The input capture can be set to generate an interrupt request at the storage timing of the counter value of the 24-bit free-run timer to the ICU data register (ICDR).
- The input compare conforms to the extended intelligent I/O service (EI²OS).
- The input capture function is suited for measurements of intervals (frequencies) and pulse-widths.

(1) Register Configuration

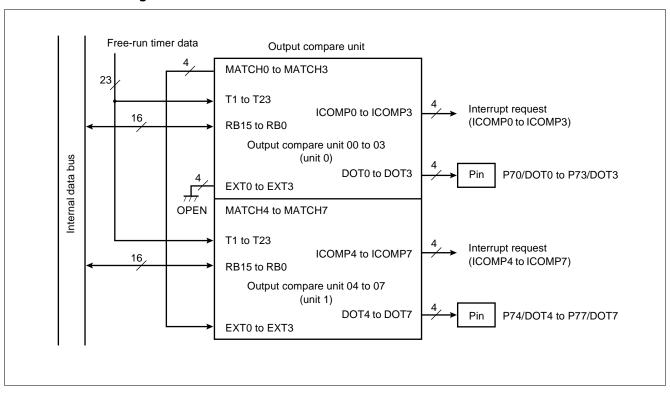

8. Output Compare (OCU)

The output compare (OCU) is two sets of compare units consisting of four-channel OCU compare data registers, a comparator and a control register.

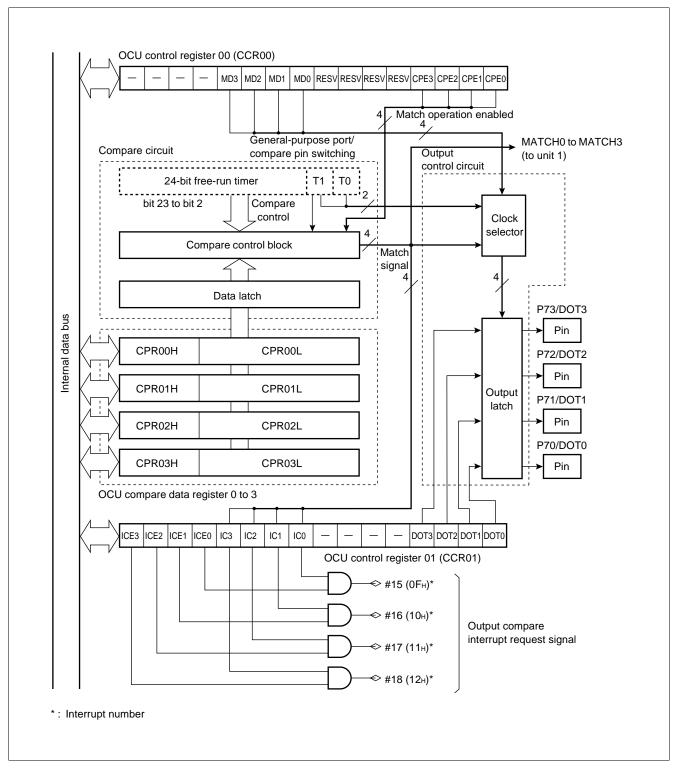
An interrupt request can be generated for each channel upon a match detection by performing time-division comparison between the OCU compare data register setting value and the counter value of the 24-bit free-run timer.


The DOT pin can be used as a waveform output pin for reversing output upon a match detection or a general-purpose output port for directly outputting the setting value of the DOT bit.

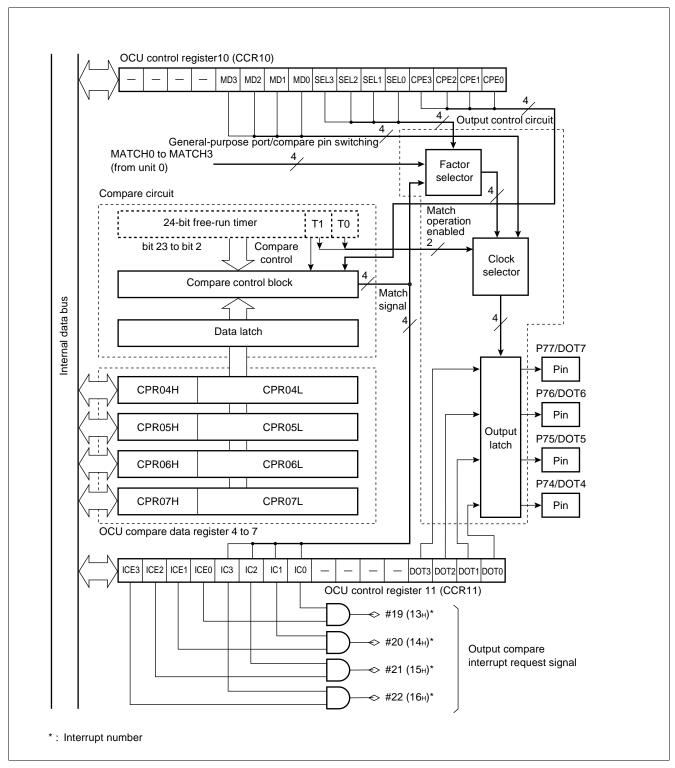
(1) Register Configuration


(Continued)

(Continued)

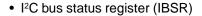


(2) Block Diagram of Output Compare (OCU)


• Overall block diagram

• Block diagram of unit 0

• Block diagram of unit 1



9. I²C Interface (Included Only in MB90675 Series)

The I²C interface is a serial I/O port supporting Inter IC BUS operating as master/slave devices on I²C bus and has the following features.

- Master/slave transmission/reception
- · Arbitration function
- Clock synchronization function
- Slave address/general call address detection function
- Transmission direction detection function
- Repeated generation function start condition and detection function
- Bus error detection function

(1) Register Configuration

Address bit 15 · · · · · · bit 8		bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000040н (IBCR)	ВВ	RSC	AL	LRB	TRX	AAS	GCA	FBT	00000000в
	R	R	R	R	R	R	R	R	•

• I²C bus control register (IBCR)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 · · · · · · · bit 0	Initial value
000041н	BER	BEIE	scc	MSS	ACK	GCAA	INTE	INT	(IBSR)	0000000В
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	- '	

• I²C bus clock control register (ICCR)

Address	bit 15 · · · · · · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000042н	(IADR)	_	_	EN	CS4	CS3	CS2	CS1	CS0	0XXXXXB
			_	R/W	R/W	R/W	R/W	R/W	R/W	•

• I²C address register (IADR)

Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7 · · · · · · · bit 0	Initial value
000043н (IADR)	_	A6	A5	A4	А3	A2	A1	A0	(ICCR)	-XXXXXXXB
	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

Address bit 15 · · · · · bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000044 _H (Reserved area)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB
	R/W								

R/W: Readable and writable

R : Read only
— : Uunsed
X : Indeterminate

10. UART0

UART0 is a general-purpose serial data communication interface for performing synchronous or asynchronous communication (start-stop synchronization system). In addition to the normal duplex communication function (normal mode), UART0 has a master/slave type communication function (multi-processor mode).

- Data buffer: Full-duplex double buffer
- Transfer mode: Clock synchronized (with start and stop bit)

Clock asynchronized (start-stop synchronization system)

• Baud rate: With dedicated baud rate generator, selectable from 12 types

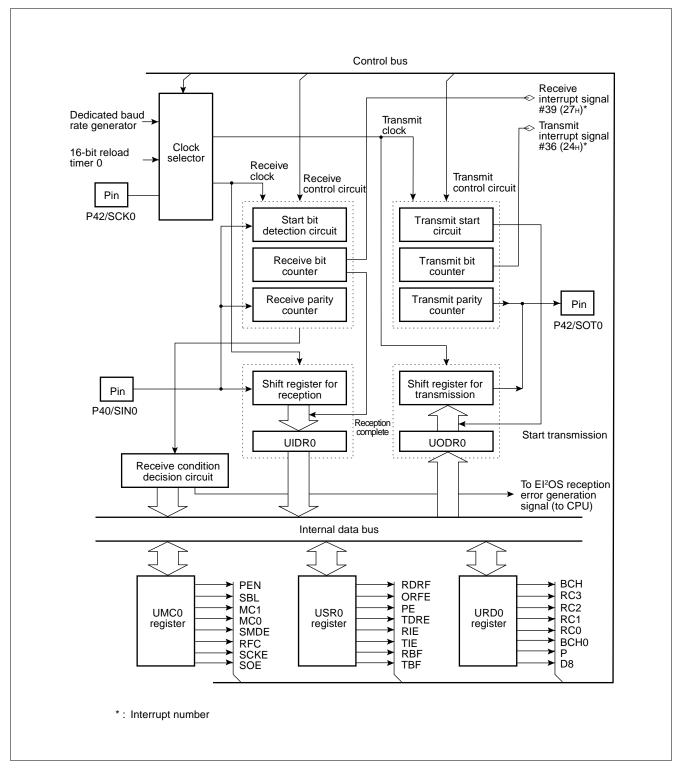
External clock input possible

Internal clock (a clock supplied from 16-bit reload timer can be used.)

- Data length: 7 bits to 9 bits selective (with a parity bit)
 - 6 bits to 8 bits selective (without a parity bit)
- Signal format: NRZ (Non Return to Zero) system
- Reception error detection: Framing error

Overrun error

Parity error (not available in multi-processor mode)


• Interrupt request: Receive interrupt (reception complete, receive error detection)

Receive interrupt (transmission complete)

Transmit/receive conforms to extended intelligent I/O service (EI2OS)

· Master/slave type communication function (multi-processor mode): 1 (master) to n (slave) communication possible

(1) Register Config											
 Status register 0 (L 	JSR0)										
Address	bit 15 bit 14	bit 13	3 bit 12	2 bit 11	bit 10	bit 9	bit 8	bit 7·		····bit 0	Initial value
000021н	RDRF ORFE	PE	TDRI	E RIE	TIE	RBF	TBF		(UMC0))	00100000в
	R/W R/W	R/W	/ R/W	R/W	R/W	R/W	/ R/W				
 Mode control regist 	er 0 (UMC0)										
Address	bit 15	···bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000020н	(USR0)		PEN	SBL	MC1	MC0	SMDE	RFC	SCKE	SOE	00000100в
Rate and data regis	ster 0 (URD0)		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	bit 15 bit 14	bit 13	3 bit 12	2 bit 11	bit 10	bit 9	bit 8	bit 7·		····bit 0	Initial value
000023н	BCH RC3	RC2	RC1	RC0	всно	Р	D8	(UI	DR0/UO	DR0)	00000000в
	R/W R/W	R/W	R/W	R/W	R/W	R/W	/ R/W				
 Input data register 	0 (UIDR0)										
Address	bit 15···· bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000022н	(URD0)	D8	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB
		R	R	R	R	R	R	R	R	R	
 Output data registe 	r 0 (UODR)										
Address	bit 15···· bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial value
000022н	(URD0)	D8	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX
DAM. Darate	المنسب لمما	W	W	W	W	W	W	W	W	W	
R/W: Reada R: Read o W: Write o X: Indeter	nlý										

11. UART1 (SCI)

UART1 (SCI) is a general-purpose serial data communication interface for performing synchronous or asynchronous communication (start-stop synchronization system). In addition to the normal duplex communication function (normal mode), UART1 has a master-slave type communication function (multiprocessor mode).

- Data buffer: Full-duplex double buffer
- Transfer mode: Clock synchronized (no start or stop bit)

Clock asynchronized (start-stop synchronization system)

• Baud rate: With dedicated baud rate generator, selectable from 8 types

External clock input possible

Internal clock (a internal clock supplied from 16-bit reload timer can be used.)

• Data length: 7 bits (for asynchronous normal mode only)

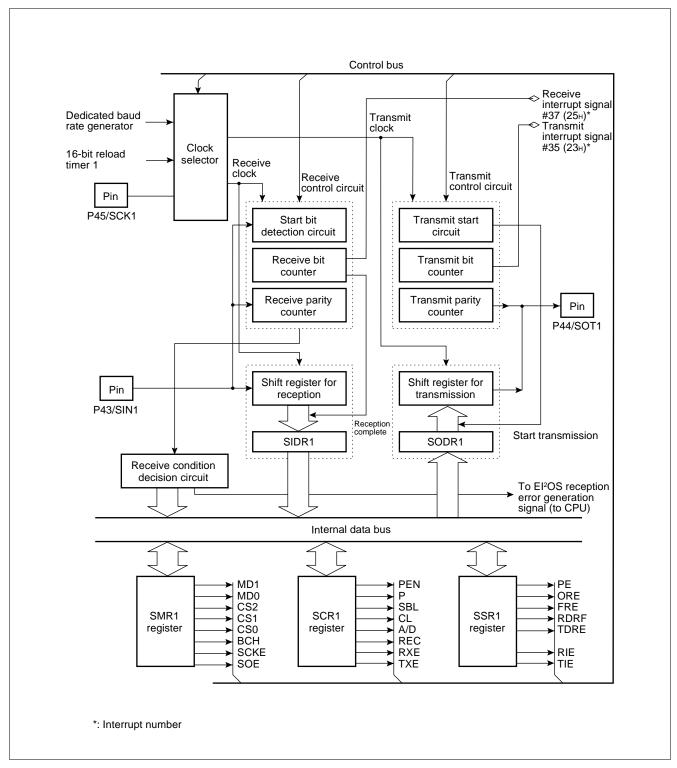
8 bits

- Signal format: NRZ (Non Return to Zero) system
- Reception error detection: Framing error

Overrun error

Parity error (not available in multi-processor mode)

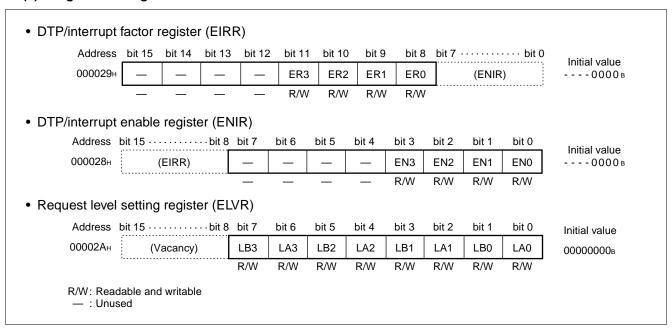
• Interrupt request: Receive interrupt (receptioncomplete, receive error detection)

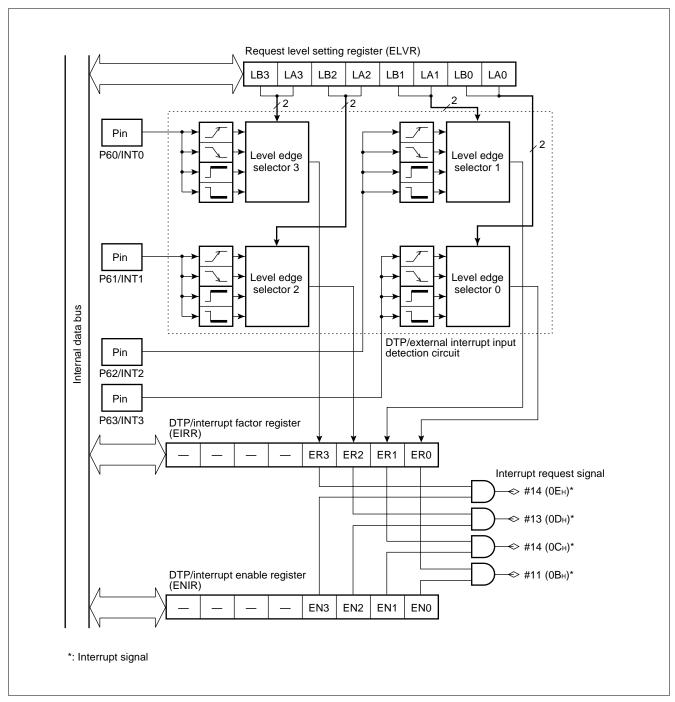

Receive interrupt (transmission complete)

Transmit/receive conforms to extended intelligent I/O service (El²OS)

• Master/slave type communication function (multi-processor mode):1 (master) to n (slave) communication possible (supported only for master station)

Desister Configuration

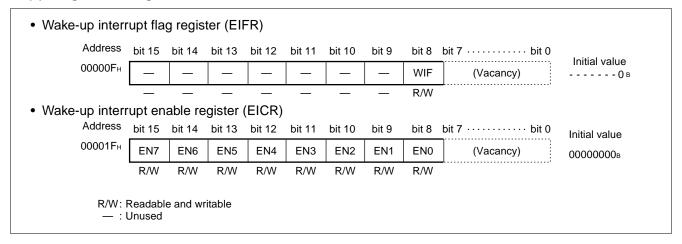

(1) Register Configur	ration
Control register 1 (So	CR1)
Address	bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7·····bit 0 Initial value
000025н	PEN P SBL CL A/D REC RXE TXE (SMR1) 00000100 _B
Mode register 1 (SM)	R/W
•	bit 15 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value
000024н	(SCR1) MD1 MD0 CS2 CS1 CS0 BCH SCKE SOE 00000000B
Status register 1 (SS	SR1) R/W R/W R/W R/W R/W R/W R/W
Address	bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 bit 7·····bit 0 Initial value
000027н	PE ORE FRE RDRF TDRE — RIE TIE (SIDR1/SODR1) 00001-00 _B
Input data register 1	R R R R R — R/W R/W (SIDR1)
Address	bit 15bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value
000026н	(SSR1) D7 D6 D5 D4 D3 D2 D1 D0 XXXXXXXXXB
Output data register	1 (SODR1)
Address	bit 15·····bit 8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value
000026н	(SSR1) D7 D6 D5 D4 D3 D2 D1 D0 XXXXXXXXXB
	W W W W W W
R : F W : V — : L	Readable and writable Read only Write only Unused Indeterminate

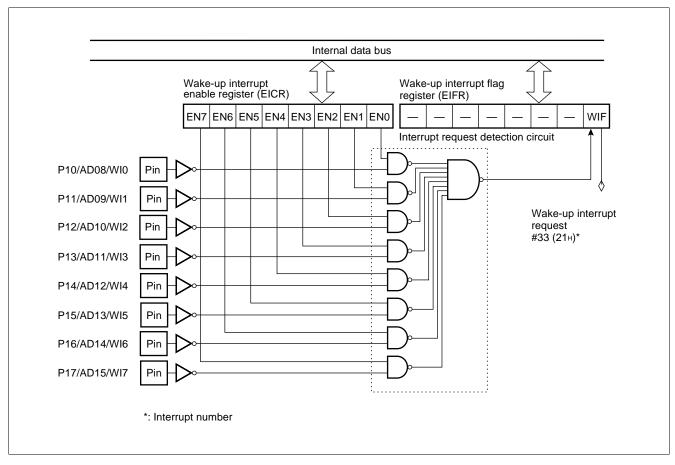


12. DTP/External Interrupt Circuit

The DTP (Data Transfer Peripheral)/external interrupt circuit is located between peripheral equipment connected externally and the F²MC-16L CPU and transmits interrupt requests or data transfer requests generated by peripheral equipment to the CPU, generates external interrupt request and starts the extended intelligent I/O service (EI²OS).

(1) Register Configuration

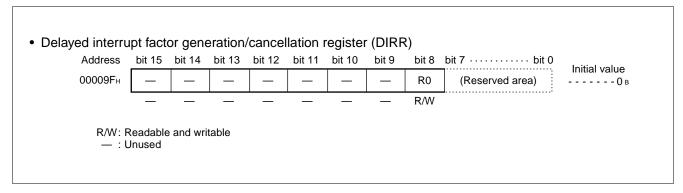


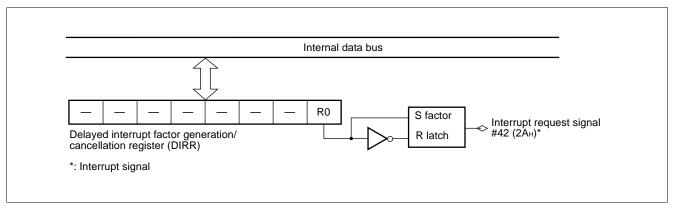

13. Wake-up Interrupt

Wake-up interrupts transmits interrupt request ("L" level) generated by peripheral device located between external peripheral devices and the F²MC-16L CPU to the CPU and invokes interrupt processing.

The interrupt does not conform to the extended intelligent I/O service (El²OS).

(1) Register Configuration




14. Delayed Interrupt Generation Module

The delayed interrupt generation module generates interrupts for switching tasks for development on a real-time operating system (REALOS software). The module can be used to generate hardware interrupt requests to the CPU with software and cancel the interrupt requests.

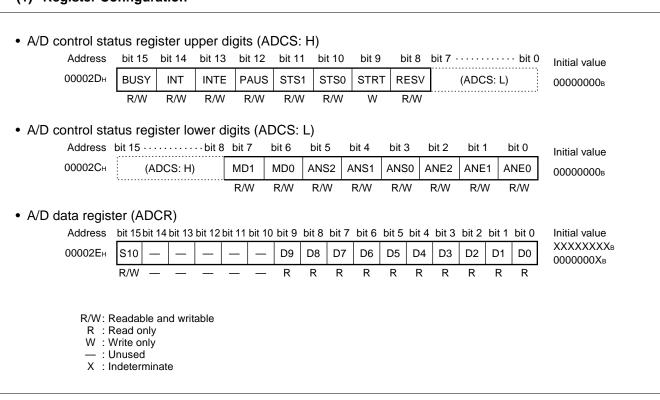
This module does not conform to the extended intelligent I/O service (El²OS).

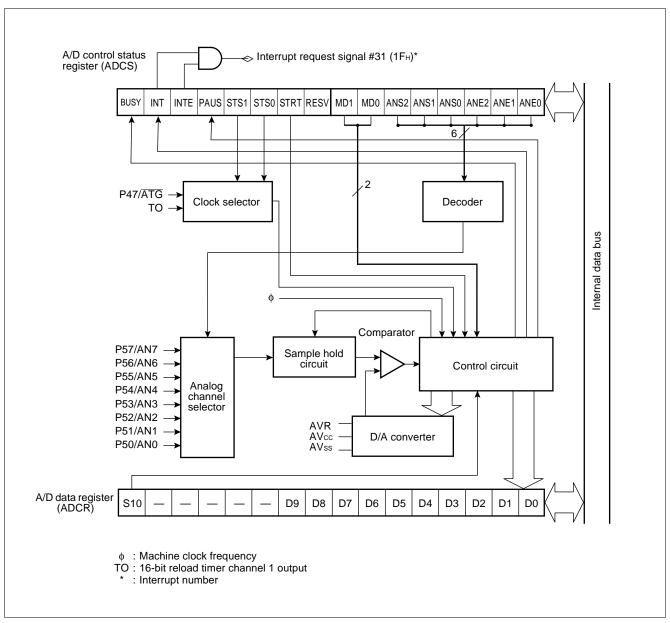
(1) Register Configuration

15. 8/10-bit A/D Converter

The 8/10-bit A/D converter has a function of converting analog voltage input to the analog input pins (input voltage) to digital values (A/D conversion) and has the following features.

- Minimum conversion time: 6.13 μs (at machine clock of 16 MHz, including sampling time)
- Minimum sampling time: 3.75 µs (at machine clock of 16 MHz)
- Conversion method: RC successive approximation method with a sample and hold circuit.
- Resolution: 10-bit or 8-bit selective
- · Analog input pins: Selectable from eight channels by software


One-shot conversion mode:Stops conversion after completing a conversion for a stopped channel (one channel only) or for successive channels (maximum of eight channels can be specified)


Continuous conversion mode:Continues conversions for a specified channel (one channel only) or for successive channels (maximum of eight channels can be specified)

Stop conversion mode:Stops conversion after completing a conversion for one channel and wait for the next activation.

- Interrupt requests can be generated and the extended intelligent I/O service (EI2OS) can be started after the end of A/D conversion.
- When interrupts are enabled, there is no loss of data even in continuous operations because the conversion data protection function is in effect.
- Starting factors for conversion: Selected from software activation, 16-bit reload timer 1 output (rising edge), and external trigger (falling edge).

(1) Register Configuration

16. Low-power Consumption (Standby) Mode

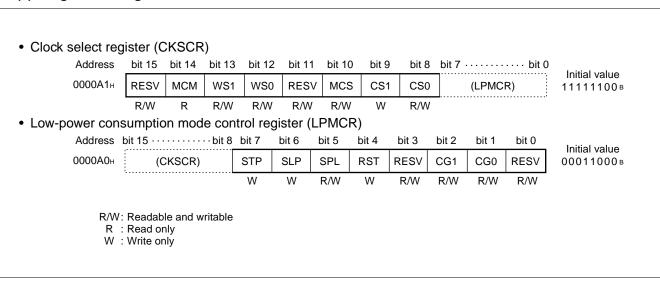
The F²MC-16L has the following CPU operating mode configured by selection of an operating clock and clock operation control.

Clock mode

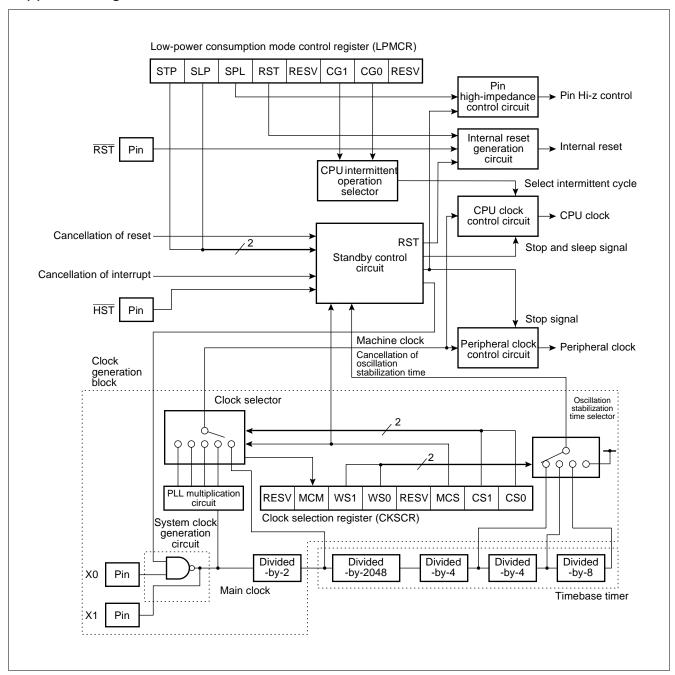
PLL clock mode: A mode in which the CPU and peripheral equipment are driven by PLL-multiplied oscillation clock (HCLK).

Main clock mode: A mode in which the CPU and peripheral equipment are driven by divided-by-2 of the oscillation clock (HCLK).

The PLL multiplication circuits stops in the mainclock mode.


• CPU intermittent operation mode

The CPU intermittent operation mode is a mode for reducing power consumption by operating the CPU intermittently while external bus and peripheral functions are operated at a high-speed.


• Hardware stand-by mode

The hardware standby mode is a mode for reducing power consumption by stopping clock supply (sleep mode) to the CPU by the low-power consumption control circuit, stopping clock supplies to the CPU and peripheral functions (timebase timer mode), and stopping oscillation clock (stop mode, hardware standby mode). Of these modes, modes other than the PLL clock mode are power consumption modes.

(1) Register Configuration

(2) Block Diagram

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Barranatan	Cymphol	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc	Vss-0.3	Vss+ 7.0	V	
Power supply voltage	AVcc	Vss - 0.3	Vss + 7.0	V	*1
	AVRH, AVRL	Vss-0.3	Vss+ 7.0	V	*1
Input voltage	Vı	Vss - 0.3	Vcc + 0.3	V	*2
Output voltage	Vo	Vss-0.3	Vcc + 0.3	V	*2
"L" level maximum output current	loL	—	15	mA	*3
"L" level average output current	lolav		4	mA	*4
"L" level total maximum output current	ΣΙοι		100	mA	
"L" level total average output current	Σ lolav		50	mA	*5
"H" level maximum output current	І он		-15	mA	*3
"H" level average output current	І онаv		-4	mA	*4
"H" level total maximum output current	ΣІон		-100	mA	
"H" level total average output current	Σ lohav		-50	mA	*5
Power consumption	P _D		400	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	– 55	+150	°C	

^{*1:} AVcc, AVRH, and AVRL shall never exceed Vcc. AVRL shall never exceed AVRH.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} V_I and V_O shall never exceed V_{CC} + 0.3 V.

^{*3:} The maximum output current is a peak value for a corresponding pin.

^{*4:} Average output current is an average current value observed for a 100 ms period for a corresponding pin.

^{*5:} Total average current is an average current value observed for a 100 ms period for all corresponding pins.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Value		Unit	Remarks
Parameter	Symbol	Min. Max.		Unit	Remarks
	Vcc	2.7	5.5	V	Normal operation
Power supply voltage	Vcc	2.0	5.5	V	Retains status at the time of operation stop
Operating temperature	TA	-40	+85	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

 $(AVcc = Vcc = 2.7 \text{ V to } 5.5 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Parameter	Symbol	rin name	Condition	Min.	Тур.	Max.	Unit	Remarks
	ViH	Pins other than V _{IHS} and V _{IHM}		0.7 Vcc	_	Vcc + 0.3	V	
"H" level	Vihs	Hysteresis input pins P24 to P27, P40 to P47, P60 to P67, P70 to P77, P80, HST, RST		0.8 Vcc		Vcc + 0.3	٧	MB90670 series
input voltage V _{IHS}	Vihs	Hysteresis input pins P24 to P27, P40 to P47, P60 to P67, P70 to P77, P80 to P86, HST, RST, P90, P91, PA0 to PA7, PB0 to PB2		0.8 Vcc	_	Vcc + 0.3	V	MB90675 series
	Vінм	MD pin input		Vcc - 0.3	_	Vcc + 0.3	V	
	VIL	Pins other than VILS and VILM		Vss - 0.3	_	0.3 Vcc	V	
"L" level	VILS	Hysteresis input pins P24 to P27, P40 to P47, P60 to P67, P70 to P77, P80, HST, RST	V	Vss - 0.3	_	0.2 Vcc	V	MB90670 series
input voltage	VILS	Hysteresis input pins P24 to P27, P40 to P47, P60 to P67, P70 to P77, P80 to P86, HST, RST, P90, P91, PA0 to PA7, PB0 to PB2		Vss - 0.3	_	0.2 Vcc	V	MB90675 series
	VILM	MD pin input		Vss - 0.3	_	Vss + 0.3	٧	
"H" level	Vон	Other than P50 to P57	$V_{CC} = 4.5 \text{ V}$ $I_{OH} = -4.0 \text{ mA}$	Vcc - 0.5	_	_	V	
output voltage	Vон	Other than P50 to P57	$V_{CC} = 2.7 \text{ V}$ $I_{OH} = -1.6 \text{ mA}$	Vcc- 0.3	_	_	٧	
"L" level	Vol	All output pins	Vcc = 4.5 V loL = 4.0 mA	_	_	0.4	V	
output voltage	Vol	All output pins	Vcc = 2.7 V loL = 2.0 mA	_	_	0.4	V	
Open-drain output leakage current	lleak	P50 to P57, P90, P91 ^{*1}	_	_	0.1	10	μΑ	
Input leakage current	lı.	Other than P50 to P57, P90 and P91	Vcc = 5.5 V Vss < Vı < Vcc	-10	_	10	μΑ	
Pull-up	R	_	Vcc = 5.0 V	25	45	100	kΩ	
resistance	R	_	Vcc = 3.0 V	40	95	200	kΩ	

(Continued)

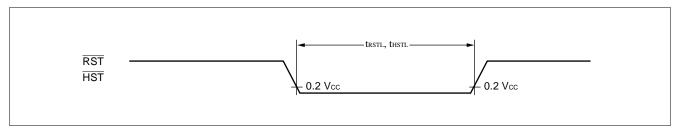
(Continued)

 $(AVcc = Vcc = 2.7 \text{ V to } 5.5 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

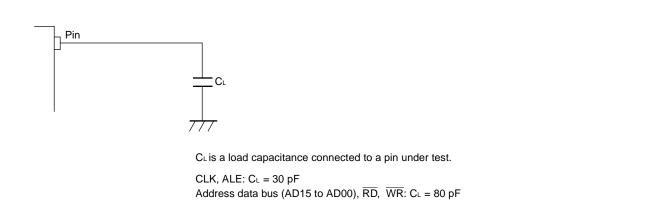
Doromotor	Cumbal	Pin name	Condition		Value		Unit	Remarks
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Unit	Kemarks
Pull-down	R	_	Vcc = 5.0 V	25	50	200	kΩ	
resistance	R	_	Vcc = 3.0 V	40	100	400	kΩ	
Icc —	_	Internal operation at 16 MHz Vcc at 5.0 V	_	50	70	mA	Normal operation*2	
	Internal operation at 16 MHz Vcc at 5.0 V	_	10	30	mA	In sleep mode*2		
Power supply current	Icc	_	Internal operation at 8 MHz Vcc at 3.0 V	_	12	20	mA	Normal operation*2
Iccs —	_	Internal operation at 8 MHz Vcc at 3.0 V	_	2.5	10	mA	In sleep mode*2	
	Іссн	_	T _A = +25°C	_	0.1	10	μА	In stop mode and hardware standby mode*2
Input capacitance	Cin	Other than AVcc, AVss, Vcc, Vss	_	_	10	_	pF	

^{*1:} Only MB90675 series has P90 and P91 pins.

^{*2:} The current value is preliminary value and may be subject to change for enhanced characteristics without previous notice.


4. AC Characteristics

(1) Reset Input Timing, Hardware Standby Input Timing

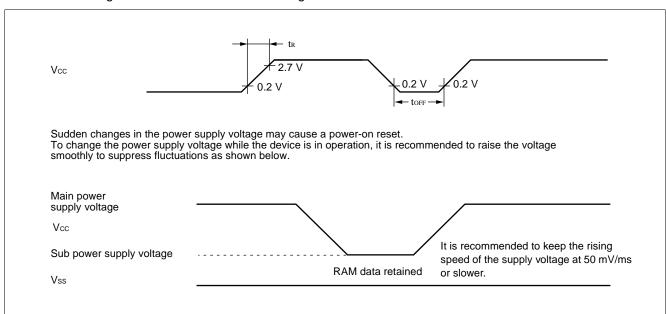

 $(AVcc = Vcc = 2.7 \text{ V to } 5.5 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Doromotor	Symbol	Din nama	Pin name Condition		lue	Unit	Remarks
Parameter	Syllibol	riii iiaiiie	Condition	Min.	Max.	Offic	Remarks
Reset input time	t rstl	RST		16 tcp*	_	ns	
Hardware standby input time	t HSTL	HST		16 tcp*	_	ns	

*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timings."

• Measurement conditions for AC ratings

(2) Specification for Power-on Reset

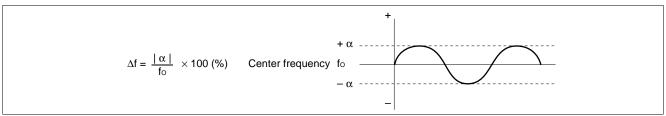

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Pin	Din nama	Condition	Value		Unit	Remarks
		riii naine		Min.	Max.	Ullit	Remarks
Power supply rising time	t R	Vcc		_	30	ms	*
Power supply cut-off time	toff	Vcc	_	1	_	ms	Due to repeated operations

^{*:} Vcc must be kept lower than 0.2 V before power-on.

Notes: • The above ratings are values for causing a power-on reset.

- When HST is set to "L" level, apply power according to this table to cause a power-on reset irrespective
 of whether or not a power-on reset is required.
- For built-in resources in the device, re-apply power to the resources to cause a power-on reset.
- There are internal registers which can be initialized only by a power-on reset. Apply power according to this rating to ensure initialization of the registers.

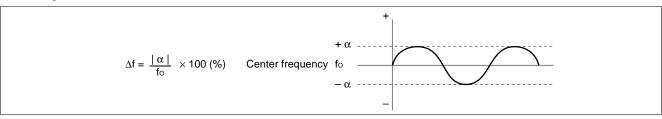

(3) Clock Timing

• Operation at 5.0 V $\pm\,10\%$

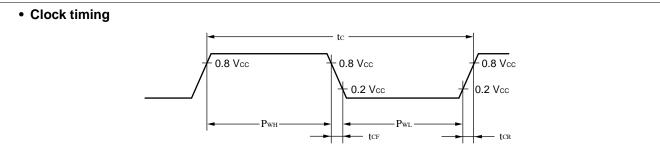
 $(AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

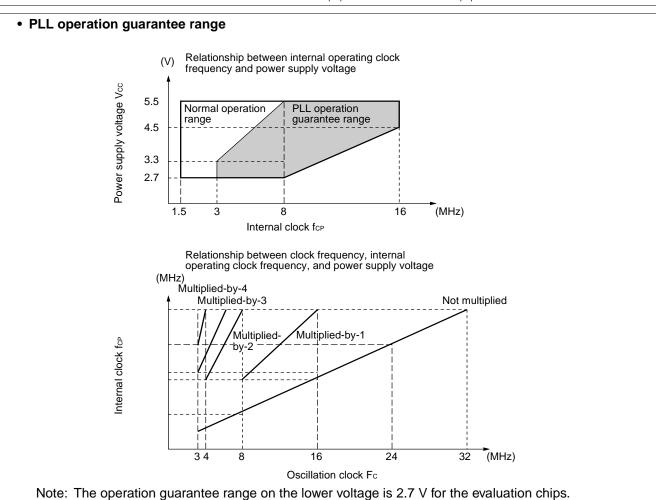
Parameter	Symbol Pin name		Condition		Value		Unit	Remarks
Parameter	Syllibol	riii iiaiiie	Condition	Min.	Тур.	Max.	Ullit	Remarks
Clock frequency	Fc	X0, X1		3	_	32	MHz	
Clock cycle time	tc	X0, X1		31.25	_	333	ns	
Input clock pulse width	P _{WH} , P _{WL}	X0		10	_	_	ns	Recommended duty ratio of 30% to 70%
Input clock rising/falling time	tcr, tcr	X0	_	_	_	5	ns	
Internal operating clock frequency	f CP	_		1.5	_	16	MHz	
Internal operating clock cycle time	t CP	_		62.5		666	ns	
Frequency fluctuation rate locked	Δf	P37/CLK		_	1	3	%	*

* : The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.

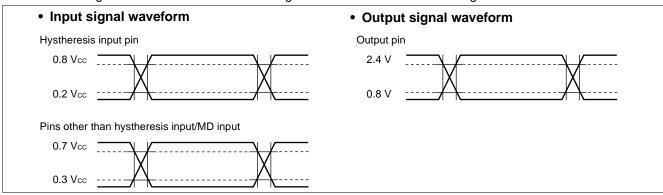

The PLL frequency deviation changes periodically from the preset frequency "(about $CLK \times (1CYC \text{ to } 50 \text{ CYC})$ ", thus minimizing the chance of worst values to be repeated (errors are minimal and negligible for pulses with long intervals).

• Operation at Vcc = 2.7 V (minimum value)

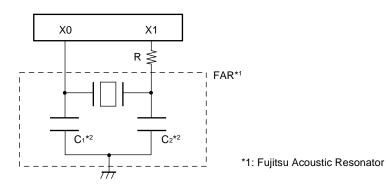

 $(AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$


				. ,	(V 33 — V		• , •	+0 0 10 100 0)
Parameter	Symbol Pin nam	Pin name	Condition	Value			Unit	Remarks
Farameter	Syllibol	riii iiaiiie	Condition	Min.	Тур.	Max.	Oilit	Nemarks
Clock frequency	Fc	X0, X1		3	_	16	MHz	
Clock cycle time	t c	X0, X1		62.5	_	333	ns	
Input clock pulse width	P _{WH} , P _{WL}	X0		20	_	_	ns	Recommended duty ratio of 30% to 70%
Input clock rising/falling time	tcr, tcr	X0	_		_	5	ns	
Internal operating clock frequency	f CP	_		1.5	_	8	MHz	
Internal operating clock cycle time	t CP	_		125	_	666	ns	
Frequency fluctuation rate locked	Δf	P37/CLK		-	_	3	%	*

* : The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.



The PLL frequency deviation changes periodically from the preset frequency "(about CLK \times (1CYC to 50 CYC)", thus minimizing the chance of worst values to be repeated (errors are minimal and negligible for pulses with long intervals).



The AC ratings are measured for the following measurement reference voltages.

(4) Recommended Resonator Manufacturers

• Sample application of piezoelectric resonator (FAR family)

FAR part number (built-in capacitor type)	Frequency (MHz)	Dumping resistor	Initial deviation of FAR frequency (T _A = +25°C)	Temperature characteristics of FAR frequency (T _A = -20°C to +60°C)	Loading capacitors*2
FAR-C4□C-2000-□20	2.00	510 Ω	±0.5%	±0.5%	Built-in
FAR-C4□A-4000-□01	4.00	_	±0.5%	±0.5%	Built-in
FAR-C4□B-4000-□02	4.00	_	±0.5%	±0.5%	Built-in
FAR-C4□B-4000-□00	4.00	_	±0.5%	±0.5%	Built-in
FAR-C4□B-8000-□02	8.00	_	±0.5%	±0.5%	Built-in
FAR-C4□B-12000-□02	12.00	_	±0.5%	±0.5%	Built-in
FAR-C4□B-16000-□02	16.00	_	±0.5%	±0.5%	Built-in
FAR-C4 B-20000-L14B	20.00	_	±0.5%	±0.5%	Built-in
FAR-C4□B-24000-L14A	24.00	_	±0.5%	±0.5%	Built-in

Inquiry: FUJITSU LIMITED

• Sample application of ceramic resonator

• Mask ROM product

Resonator manufacturer	Resonator	Frequency (MHz)	C ₁ (pF)	C ₂ (pF)	R
	KBR-2.0MS	2.00	150	150	Not required
	PBRC-2.00A	2.00	150	150	Not required
	KBR-4.0MSA	4.00	33	33	680 Ω
	KBR-4.0MKS	4.00	Built-in	Built-in	680 Ω
	PBRC4.00A	4.00	33	33	680 Ω
	PBRC4.00B	4.00	Built-in	Built-in	680 Ω
	KBR-6.0MSA	6.00	33	33	Not required
	KBR-6.0MKS	6.00	Built-in	Built-in	Not required
Kyocera Corporation	PBRC6.00A	6.00	33	33	Not required
Corporation	PBRC6.00B	6.00	Built-in	Built-in	Not required
	KBR-8.0M	8.00	33	33	560 Ω
	PBRC8.00A	8.00	33	33	Not required
	PBRC8.00B	8.00	Built-in	Built-in	Not required
	KBR-10.0M	10.00	33	33	330 Ω
	PBRC10.00B	10.00	Built-in	Built-in	680 Ω
	KBR-12.0M	12.00	33	33	330 Ω
	PBRC-12.00B	12.00	Built-in	Built-in	680 Ω
	CSA2.00MG040	2.00	100	100	Not required
	CST2.00MG040	2.00	Built-in	Built-in	Not required
	CSA4.00MG040	4.00	100	100	Not required
Murata	CST4.00MGW040	4.00	Built-in	Built-in	Not required
Mfg. Co., Ltd.	CSA6.00MG	6.00	30	30	Not required
	CST6.00MGW	6.00	Built-in	Built-in	Not required
	CSA8.00MTZ	8.00	30	30	Not required
	CST8.00MTW	8.00	Built-in	Built-in	Not required

(Continued)

(Continued)

Resonator manufacturer	Resonator	Frequency (MHz)	C ₁ (pF)	C ₂ (pF)	R
	CSA10.0MTZ	10.00	30	30	Not required
	CST10.0MTW	10.00	Built-in	Built-in	Not required
	CSA12.0MTZ	12.00	30	30	Not required
	CST12.0MTW	12.00	Built-in	Built-in	Not required
	CSA16.00MXZ040	16.00	15	15	Not required
Murata Mfg. Co., Ltd.	CST16.00MXW0C3	16.00	Built-in	Built-in	Not required
lviig. Co., Ltd.	CSA20.00MXZ040	20.00	10	10	Not required
	CSA24.00MXZ040	24.00	5	5	Not required
	CST24.00MXW0H1	24.00	Built-in	Built-in	Not required
	CSA32.00MXZ040	32.00	5	5	Not required
	CST32.00MXW040	32.00	Built-in	Built-in	Not required
TDK Corporation	FCR4.0MC5	4.00	Built-in	Built-in	Not required

• One-time product

Resonator manufacturer	Resonator	Frequency (MHz)	C ₁ (pF)	C ₂ (pF)	R
	CSTCS4.00MG0C5	4.0	Built-in	Built-in	Not required
	CST8.00MTW	8.00	Built-in	Built-in	Not required
Murata Mfg. Co., Ltd.	CSACS8.00MT	8.00	30	30	Not required
lving. Oo., Ltd.	CSA10.0MTZ	10.00	30	30	Not required
	CST10.0MTW	10.00	Built-in	Built-in	Not required
TDK Corporation	FCR4.0MC5	4.00	Built-in	Built-in	Not required

Inquiry: Kyocera Corporation

AVX Corporation

North American Sales Headquarters: TEL 1-803-448-9411

AVX Limited

European Sales Headquarters: TEL 44-1252-770000

• AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 852-363-3303

Murata Mfg. Co., Ltd.

- Murata Electronics North America, Inc.: TEL 1-404-436-1300
- Murata Europe Management GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

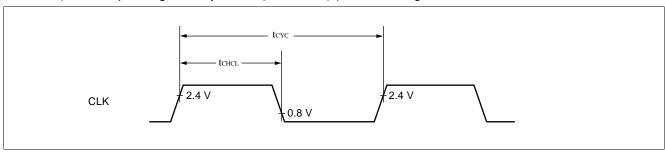
TDK Corporation

• TDK Corporation of America

Chicago Regional Office: TEL 1-708-803-6100

• TDK Electronics Europe GmbH

Components Division: TEL 49-2102-9450

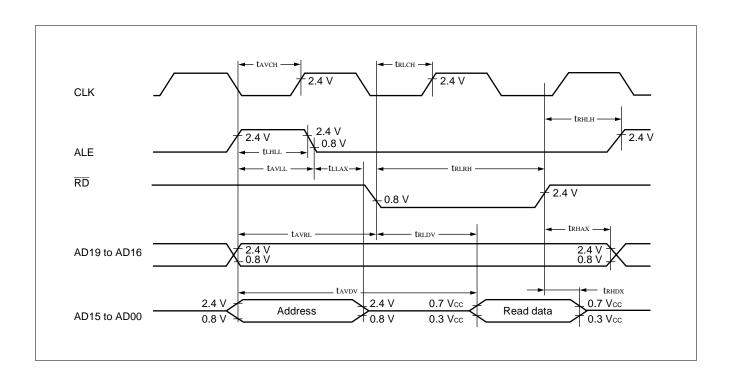

- TDK Singapore (PTE) Ltd.: TEL 65-273-5022
- TDK Hongkong Co., Ltd.: TEL 852-736-2238
- Korea Branch, TDK Corporation: TEL 82-2-554-6633

(5) Clock Output Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

Parameter	Symbol	Pin name	Condition	Va	Unit	Remarks	
Parameter Syl		Finitianie	Condition	Min.	Max.	Oilit	iveillai ka
Cycle time	tcyc	CLK		1 t cp*	_	ns	
$CLK \uparrow \to CLK \downarrow$	t CHCL	CLK	_	1 tcp*/2 - 20	1 tcp*/2 + 20	ns	

^{*:} For top (internal operating clock cycle time), refer to "(3) Clock Timing".

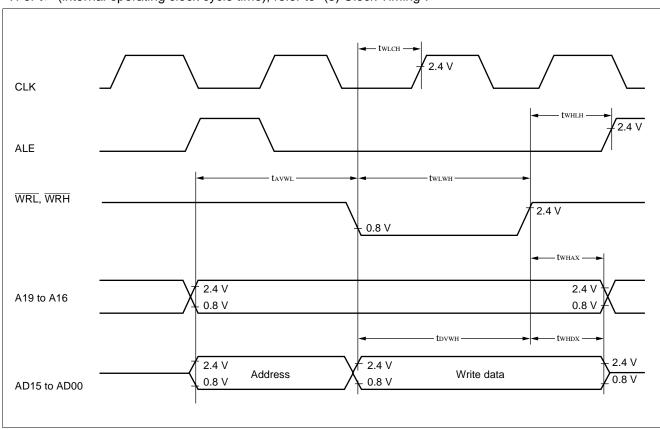


(6) Bus Read Timing

(AVcc = Vcc = 2.7 V to 5.5 V, AVss = Vss = 0.0 V, $T_A = -40$ °C to +85°C)

Darameter	Symbol	Din nama	Condition	Va	lue	l lmi4	Domorko
Parameter	Symbol	Pin name	Condition	Min.	Max.	Unit	Remarks
ALE pulse width	t LHLL	ALE	$Vcc = 5.0 V \pm 10\%$	1 tcp*/2 - 20	_	ns	
ALL puise width	t LHLL	ALE	$Vcc = 3.0 V \pm 10\%$	1 tcp*/2 - 35	_	ns	
Effective address \rightarrow	t avll	AD15 to AD00	$Vcc = 5.0 V \pm 10\%$	1 tcp*/2 - 25		ns	
ALE ↓ time	t avll	AD15 to AD00	$Vcc = 3.0 V \pm 10\%$	1 tcp*/2 - 40		ns	
$ ALE \downarrow \to address \\ effective \ time $	tLLAX	AD15 to AD00		1 tcp*/2 - 15	_	ns	
	tavrl	AD15 to AD00	_	1 tcp* - 15		ns	
Effective address \rightarrow	tavdv	AD15 to AD00	$Vcc = 5.0 V \pm 10\%$	_	$5 \text{ tcp}^*/2 - 60$	ns	
read data time	t avdv	AD15 to AD00	Vcc = 3.0 V ±10%	_	5 tcp*/2 - 80	ns	
RD pulse width	t rlrh	RD	_	3 tcp*/2 - 20		ns	
$\overline{RD} \downarrow \rightarrow read data time$	t RLDV	AD15 to AD00	$Vcc = 5.0 V \pm 10\%$	_	3 tcp*/2 - 60	ns	
ND → read data time	trldv	AD15 to AD00	Vcc = 3.0 V ±10%	_	3 tcp*/2 - 80	ns	
$\overline{RD} \uparrow \to data \; hold \; time$	t RHDX	AD15 to AD00		0		ns	
$\overline{RD} \uparrow \to ALE \uparrow time$	t RHLH	RD, ALE		1 tcp*/2 - 15		ns	
$\overline{RD} \uparrow \to address$ disappear time	t RHAX	RD, A19 to A16	_	1 tcp*/2 - 10		ns	
Effective address → CLK ↑ time	tavch	CLK, A19 to A16		1 tcp*/2 - 20		ns	
$\overline{RD} \downarrow \to CLK \uparrow time$	t RLCH	RD, CLK		1 tcp*/2 - 20		ns	

^{*:} For top (internal operating clock cycle time), refer to "(3) Clock Timing".

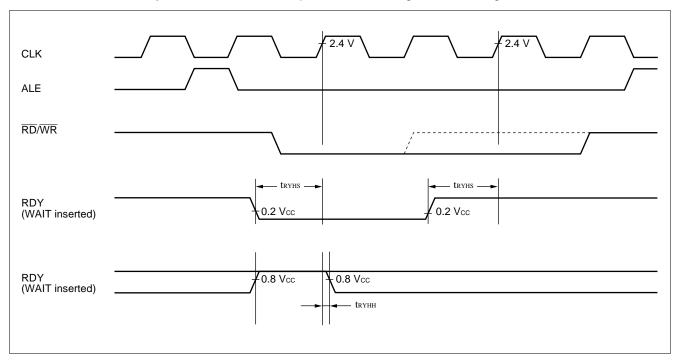


(7) Bus Write Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, T_A = -40^{\circ}C to +85^{\circ}C)$

Doromotor	Symbol	Pin name	Condition	Val	ue	Unit	Remarks
Parameter	Syllibol	Pili lialile	Condition	Min.	Max.	Unit	Remarks
	tavwl	A19 to A00		1 tcp - 15	_	ns	
WR pulse width	twlwh	WR	<u> </u>	3 tcp*/2 - 20	_	ns	
Write data $\rightarrow \overline{WR} \uparrow time$	tоvwн	AD15 to AD00		3 tcp*/2 - 20	_	ns	
$\overline{\rm WR} \uparrow \rightarrow {\rm data\ hold\ time}$	twhox	AD15 to AD00	Vcc = 5.0 V ±10%	20	_	ns	
VVK 1 → data noid time	twhox	AD15 to AD00	$Vcc = 3.0 V \pm 10\%$	30	_	ns	
$\overline{\mathrm{WR}} \uparrow \rightarrow \mathrm{address}$ disappear time	twhax	A19 to A00		1 tcp*/2 - 10	_	ns	
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	WRL, ALE	_	1 tcp*/2 - 15	_	ns	
$\overline{WR} \downarrow \to CLK \uparrow time$	twlch	WRH, CLK		1 tcp*/2 - 20	_	ns	

*: For top (internal operating clock cycle time), refer to "(3) Clock Timing".

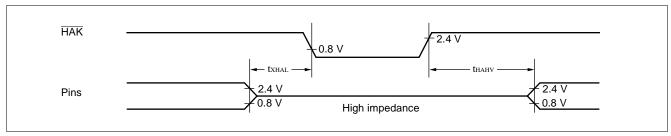


(8) Ready Input Timing

 $(AVcc = Vcc = 2.7 \text{ V to } 5.5 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter Symbol		Pin name	Condition	Va	lue	Unit	Remarks
		Fill liallie	Condition	Min.	Max.	Oilit	
RDY setup time	t RYHS	RDY	$Vcc = 5.0 V \pm 10\%$	45	_	ns	
RDY setup time	tryhs	RDY	Vcc = 3.0 V ±10%	70	_	ns	
RDY hold time	t RYHH	RDY	_	0	_	ns	

Note: Use the auto-ready function when the setup time for the rising of the RDY signal is not sufficient.


(9) Hold Timing

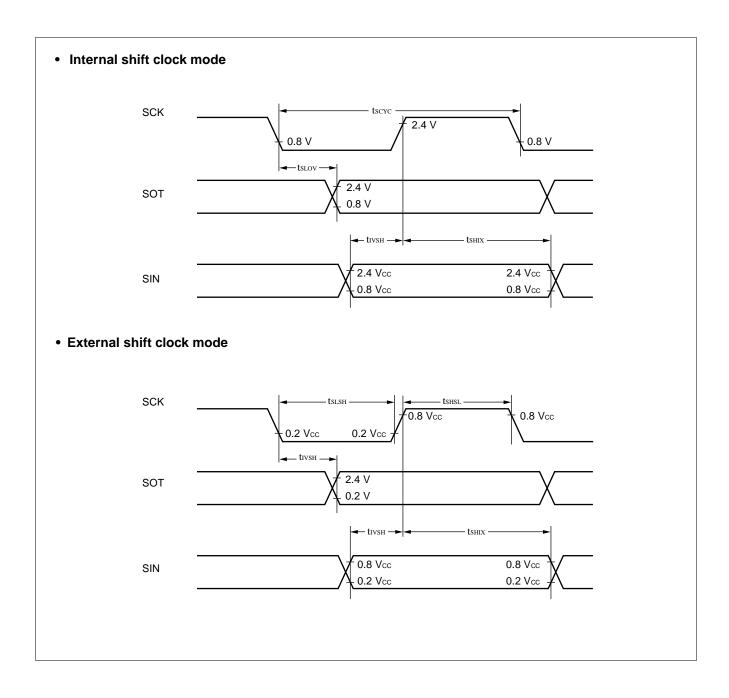
 $(AVcc = Vcc = 2.7 \text{ V to } 5.5 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Daramatar	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Parameter	Syllibol	Pili liaille	Condition	Min.	Max.	Ullit	Kelliaiks
$\frac{\text{Pins in floating status} \rightarrow}{\text{HAK}} \downarrow \text{time}$	txhal	HAK	_	30	1 t cp*	ns	
$\overline{HAK} \uparrow \to pin \ valid \ time$	t HAHV	HAK		1 tcp*	2 tcp*	ns	

^{*:} For tcp (internal operating clock cycle time), refer to "(3) Clock Timing".

Note: More than 1 machine cycle is needed before HAK changes after HRQ pin is fetched.

(10) UARTO Timing


 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Parameter	Symbol	riii iiaiiie	Condition	Min.	Max.	Oilit	Remarks	
Serial clock cycle time	tscyc	_	_	8 tcp*	_	ns		
$SCK \downarrow \to SOT$ delay	t sLOV	_	Vcc = 5.0 V ±10%	- 80	80	ns	Internal shift	
time	t sLOV	_	Vcc = 3.0 V ±10%	- 120	120	ns	clock mode	
Valid SIN → SCK ↑	t ivsH	_	Vcc = 5.0 V ±10%	100	_	ns	C _L = 80 pF	
Valid SIN → SCR 1	t ivsh	_	$Vcc = 3.0 V \pm 10\%$	200	_	ns	+ 1 TTL for an loutput pin	
$\begin{array}{c} SCK \! \uparrow \to valid SIN hold \\ time \end{array}$	t sнıx	_		1 tcp*	_	ns	σαιραί μπ	
Serial clock "H" pulse width	t shsl	_	_	4 tcp*	_	ns		
Serial clock "L" pulse width	t slsh	_		4 tcp*	_	ns	External shift	
$SCK \downarrow \to SOT$ delay	t sLOV		Vcc = 5.0 V ±10%		150	ns	clock mode	
time	tslov	_	Vcc = 3.0 V ±10%	_	200	ns	C∟ = 80 pF + 1 TTL for an	
Valid SIN → SCK ↑	t ivsh	_	$Vcc = 5.0 V \pm 10\%$	60	_	ns	output pin	
Valid SIIV -> SCIV 1	t ivsh	_	$Vcc = 3.0 V \pm 10\%$	120	_	ns		
$SCK \uparrow \rightarrow valid SIN hold$	t shix	_	Vcc = 5.0 V ±10%	60	_	ns		
time	t sнıx	_	$Vcc = 3.0 V \pm 10\%$	120	_	ns		

^{*:} For top (internal operating clock cycle time), refer to "(3) Clock Timing".

Notes: • These are AC ratings in the CLK synchronous mode.

[•] C_L is the load capacitor connected to pins while testing.

(11) UART1 Timing

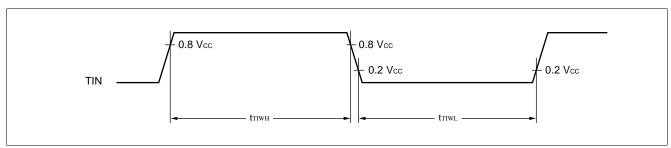

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Farameter	Syllibol	FIII IIailie	Condition	Min.	Max.	Oilit	Remarks	
Serial clock cycle time	tscyc	_	_	8 tcp*	_	ns		
$SCK \downarrow \to SOT$ delay	t sLOV	_	Vcc = 5.0 V ±10%	- 80	80	ns	Internal shift	
time	t sLOV	_	Vcc = 3.0 V ±10%	- 120	120	ns	clock mode	
Valid SIN → SCK ↑	t ıvsH	_	Vcc = 5.0 V ±10%	100	_	ns	C _L = 80 pF	
Valid SIN -> SON 1	t ivsH	_	$Vcc = 3.0 V \pm 10\%$	200	_	ns	+ 1 TTL for an output pin	
$SCK \uparrow \rightarrow valid SIN hold time$	t shix	_		1 tcp*	_	ns	σαιραί μπ	
Serial clock "H" pulse width	t shsl	_	_	4 tcp*	_	ns		
Serial clock "L" pulse width	t slsh	_		4 tcp*	_	ns	External shift	
$SCK \downarrow \to SOT$ delay	t sLOV	_	Vcc = 5.0 V ±10%		150	ns	clock mode	
time	tslov	_	Vcc = 3.0 V ±10%		200	ns	C∟ = 80 pF + 1 TTL for an	
Valid SIN → SCK ↑	t ivsH	_	$Vcc = 5.0 V \pm 10\%$	60	_	ns	output pin	
Valid SIN -> SON 1	t ivsH	_	Vcc = 3.0 V ±10%	120	_	ns		
$SCK \uparrow \rightarrow valid SIN hold$	t shix	_	Vcc = 5.0 V ±10%	60	_	ns		
time	t sнıx	_	$Vcc = 3.0 V \pm 10\%$	120	_	ns		

^{*:} For top (internal operating clock cycle time), refer to "(3) Clock Timing".

Notes: • These are AC ratings in the CLK synchronous mode.

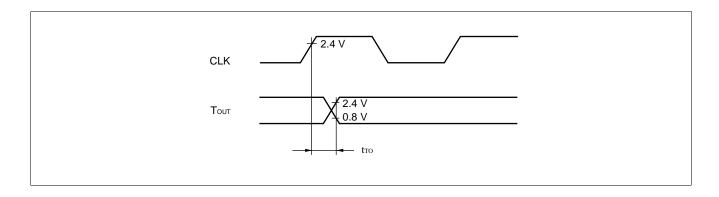
[•] C_L is the load capacitor connected to pins while testing.



(12) Timer Input Timing

 $(AVcc = Vcc = 5.0 V \pm 10\%, AVss = Vss = 0.0 V, TA = -40°C to +85°C)$

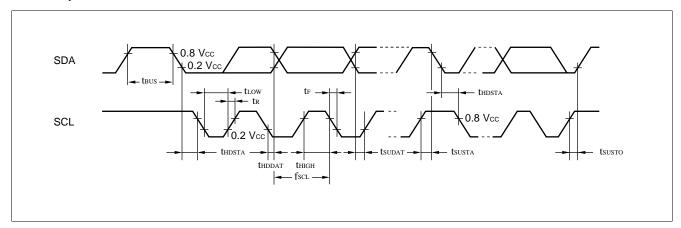
Parameter	Symbol	Value Value		Pin name Condition Value		Pin name Condition		Linit	Remarks
raiailletei	Syllibol	Fill Hallie	Condition	Min.	Max.	Offic	itelliai ks		
Input pulse width	tтiwн, tтiwL	TIN0, TON1	_	4 tcp*	_	ns			


*: For tcp (internal operating clock cycle time), refer to "(3) Clock Timing".

(13) Timer Output Timing

 $(AVcc = Vcc = 2.7 \text{ V to } 5.5 \text{ V}, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
raidilletei	ster Symbol Pin		Condition	Min.	Max.	Offic	IVEIIIAI KS
$CLK \uparrow \to T_OUT$	t TO	TOT0, TOT1	$Vcc = 5.0 V \pm 10\%$	30	_	ns	
transition time	t TO	TOT0, TOT1	Vcc = 3.0 V ±10%	80		ns	



(14) I²C Timing

 $(AVcc = Vcc = 5.0 \text{ V} \pm 10\%, AVss = Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

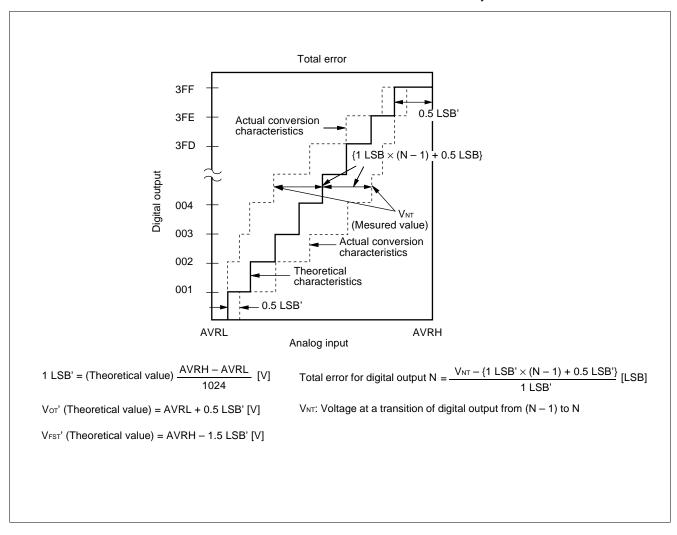
Parameter	Symbol	Pin name Condition	Va	lue	Unit	Remarks	
Parameter	Syllibol	riii iiaiiie	Condition	Min.	Max.	Unit	Remarks
SCL clock frequency	fscL	_		0	100	kHz	
Bus free time between stop and start conditions	tBUS	_		4.7	_	μs	
Hold time (re-transmission) start	thdsta	_		4.0	_	μs	The first clock pulse is generated after this period.
LOW status hold time of SCL clock	tLOW	_		4.7	_	μs	
HIGH status hold time of SCL clock	t HIGH	_		4.0	_	μs	
Setup time for conditions for starting re-transmission	tsusta	_		4.7	_	μs	
Data hold time	t HDDAT			0		μs	
Data setup time	t SUDAT	_		250	_	ns	
Rising time of SDA and SCL signals	tR	_		_	1000	ns	
Falling time of SDA and SCL signals	t⊧	_		_	300	ns	
Setup time for stop conditions	t susto			4.0		μs	

Note: Only MB90675 series has I²C.

5. A/D Converter Electrical Characteristics

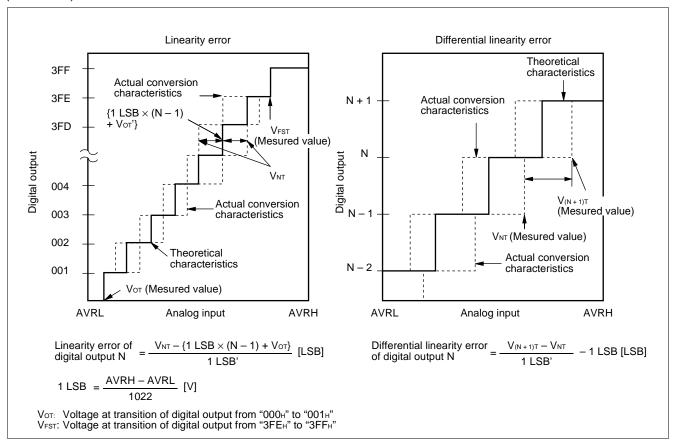
(AVcc = Vcc = 2.7 V to 5.5 V, AVss = Vss = 0.0 V, 2.7 V \leq AVRH - AVRL, TA = -40°C to +85°C)

Doromotor	Symbol	Pin name	Condition		Value		Unit
Parameter	Symbol	Pin name	Condition	Min.	Тур.	Max.	Onit
Resolution	_	_		_	_	10	bit
Total error	_	_		_	_	±3.0	LSB
Linearity error	_	_		_	_	±2.0	LSB
Differential linearity error	_	_			_	±1.5	LSB
Zero transition voltage	Vот	AN0 to AN7		AVRL -1.5 LSB	AVRL + 0.5 LSB	AVRL + 2.5 LSB	mV
Full-scale transition voltage	V _{FST}	AN0 to AN7		AVRH - 4.5 LSB	AVRH -1.5 LSB	AVRH + 0.5 LSB	mV
Conversion time	_		$Vcc = 5.0 V \pm 10\%$ at machine clock of 16 MHz	6.125	_	_	μs
CONVERSION LINE	_	_	$Vcc = 3.0 \text{ V} \pm 10\%$ at machine clock of 8 MHz	12.25	_	_	μs
Analog port input current	IAIN	AN0 to AN7			0.1	10	μΑ
Analog input voltage	VAIN	AN0 to AN7		AVRL	_	AVRH	V
D. (_	AVRH	_	AVRL - 2.7	_	AVcc	V
Reference voltage	_	AVRL		0	_	AVRH - 2.7	V
	la	AVcc		_	3	_	mΑ
Power supply current	Іан	AVcc	Supply current when CPU stopped and A/D converter not in operation (Vcc = AVcc = AVRH = 5.0 V)	_	_	5	μΑ
	IR	AVRH	_	_	200	_	μΑ
Reference voltage supply current	Iкн	AVRH	Supply current when CPU stopped and A/D converter not in operation (Vcc = AVcc = AVRH = 5.0 V)	_	_	5	μΑ
Offset between channels	_	AN0 to AN7	_	_	_	4	LSB


6. A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

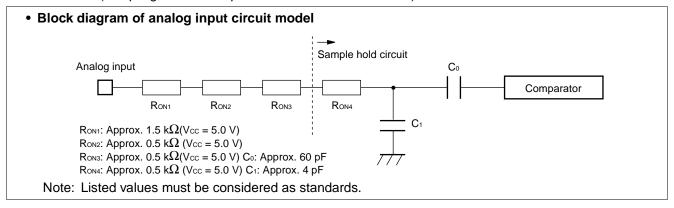
Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics


Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

(Continued)

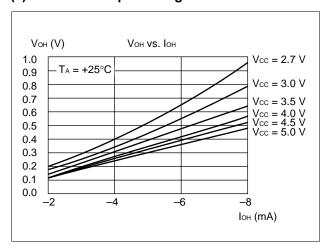


7. Notes on Using A/D Converter

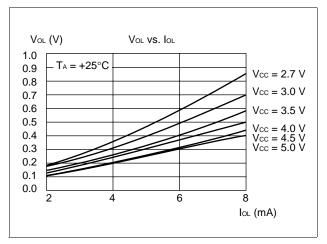
Select the output impedance value for the external circuit of analog input according to the following conditions. Output impedance values of the external circuit of 7 k Ω or lower are recommended.

When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

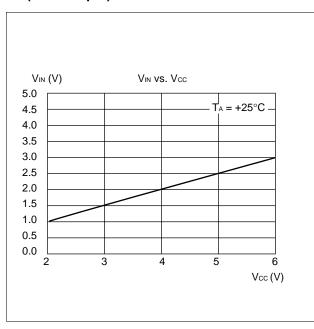
When the output impedance of the external circuit is too high, the sampling time for analog voltages may not be sufficient (sampling time = $3.75 \,\mu s$ @machine clock of $16 \,MHz$).

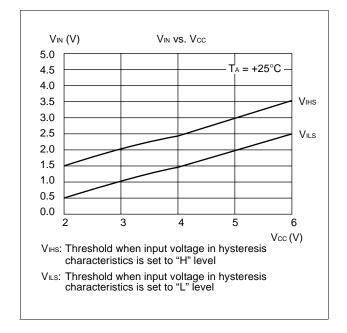


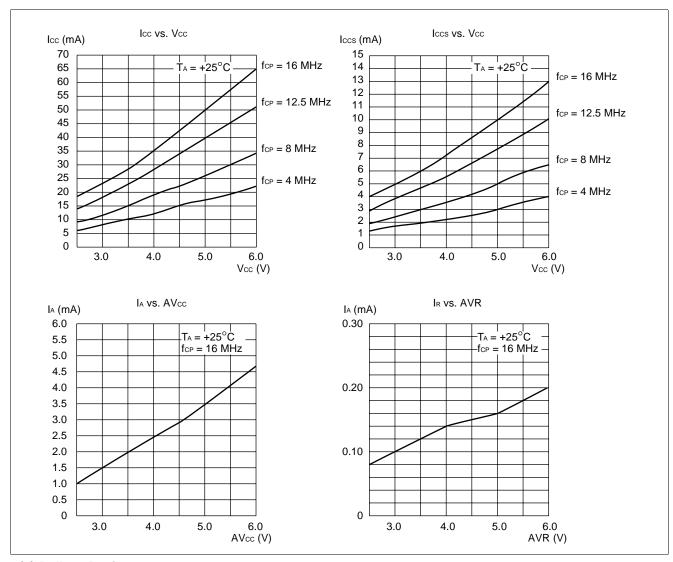
Error

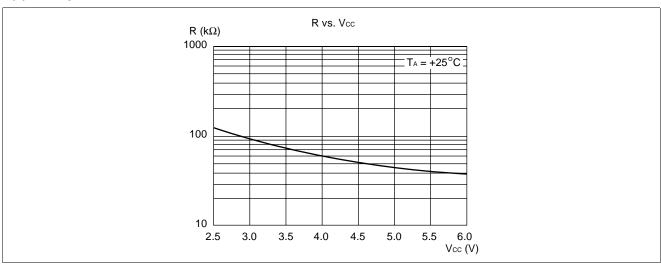

The smaller the | AVRH – AVRL |, the greater the error would become relatively.

■ EXAMPLE CHARACTERISTICS


(1) "H" Level Output Voltage


(2) "L" Level Output Voltage


(CMOS Input)


(3) "H" Level Input Voltage/"L" Level Input Voltage (4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(5) Power Supply Current (fcp = Internal Operating Clock Frequency)

(6) Pull-up Resistance

■ INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.
#	Indicates the number of bytes.
~	Indicates the number of cycles. m: When branching n: When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
В	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the "~" column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z: Transfers "0". X: Extends with a sign before transferring. -: Transfers nothing.
АН	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00H to AH. X : Transfers 00H or FFH to AH by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),
S	N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction.
Т	- : No change.
N	S: Set by execution of instruction. R: Reset by execution of instruction.
Z	
V	
С	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte: Lower 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL:AH
AH AL	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFн)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address

(Continued)

(Continued)

Symbol	Meaning
rel	Branch specification relative to PC
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code		Notation	1	Address format	Number of bytes in address extension *
00 01 02 03 04 05 06 07	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	
08 09 0A 0B	@R @R @R @R	.W1 W2		Register indirect	0
0C 0D 0E 0F	@R @R	W0 + W1 + W2 + W3 +		Register indirect with post-increment	0
10 11 12 13 14 15 16 17	@R @R @R @R @R	W0 + dis W1 + dis W2 + dis W3 + dis W4 + dis W5 + dis W6 + dis	.p8 p8 p8 p8 p8 p8 p8	Register indirect with 8-bit displacement	1
18 19 1A 1B	@RW0 + disp16 @RW1 + disp16 @RW2 + disp16 @RW3 + disp16			Register indirect with 16-bit displacement	2
1C 1D 1E 1F	@R	W0 + RV W1 + RV C + disp ^r r16	٧7	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Note: The number of bytes in the address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the tables of instructions.

Table 4 Number of Execution Cycles for Each Type of Addressing

		(a)	Number of register						
Code	Operand	Number of execution cycles for each type of addressing	accesses for each type of addressing						
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions						
08 to 0B	@RWj	2	1						
0C to 0F	@RWj +	4	2						
10 to 17	@RWi + disp8	2	1						
18 to 1B	@RWj + disp16	2	1						
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	4 4 2 1	2 2 0 0						

Note: "(a)" is used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

	(b) l	oyte	(c) v	vord	(d) long			
Operand	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access		
Internal register	+0	1	+0	1	+0	2		
Internal memory even address Internal memory odd address	+0 +0	1 1	+0 +2	1 2	+0 +4	2 4		
Even address on external data bus (16 bits) Odd address on external data bus (16 bits)	+1 +1	1	+1 +4	1 2	+2 +8	2 4		
External data bus (8 bits)	+1	1	+4	2	+8	4		

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

• When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	_	+2
External data bus (16 bits)	_	+3
External data bus (8 bits)	+3	_

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

• Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Table 7 Transfer Instructions (Byte) [41 Instructions]

N	Inemonic	#	~	R G	В	Operation	L H	A H	I	s	Т	N	Z	٧	С	RM W
MOV	A, dir	2	3	0	(b)	byte (A) ← (dir)	Z	*	_	_	_	*	*	_	_	_
MOV	A, addr16	3	4	0	(b)	byte (A) ← (addr16)	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, Ri	1	2	1	`o´	byte $(A) \leftarrow (Ri)$	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, ear	2	2	1	0	byte (A) ← (ear)	Ζ	*	_	_	 	*	*	_	_	_
MOV	A, eam	2+	3+ (a)	0	(b)	byte (A) ← (eam)	Ζ	*	_	_	-	*	*	_	_	_
MOV	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	Ζ	*	_	-	-	*	*	_	-	_
MOV	A, #imm8	2	2	0	0	byte (A) ← imm8	Ζ	*	-	_	_	*	*	_	-	_
MOV	A, @A	2	3	0	(b)	byte $(A) \leftarrow ((A))$	Ζ	_	-	-	-	*	*	_	-	-
MOV	A, @RLi+disp8	3	10	2	(b)	byte (A) ←	Z	*	_	_	_	*	*	_	-	_
MOVN	A, #imm4	1	1	0	0	((RLi)+disp8)	Z	*	_	_	_	R	*	_	-	_
MOVX	A, dir	2	3	0	(b)	byte (A) ← imm4	Х	*	_	_	_	*	*	_	_	_
MOVX	A, addr16	3	4	0	(b)	byte (A) \leftarrow (dir)	X	*	_			*	*	_	_	_
MOVX	A, Ri	2	2	1	0	byte (A) \leftarrow (addr16)	X	*	_			*	*	_	_	_
MOVX	A, ear	2	2	1	0	byte (A) \leftarrow (Ri)	X	*	_	_	_	*	*	_	_	_
MOVX	A, eam	2+	3+ (a)	0	(b)	byte (A) \leftarrow (ear)	X	*	_	_	_	*	*	_	_	_
MOVX	A, io	2	3	0	(b)	byte (A) \leftarrow (ean)	X	*	_	_	_	*	*	_	_	_
MOVX	A, #imm8	2	2	Ö	0	byte (A) \leftarrow (io)	X	*	_	_	_	*	*	_	_	_
MOVX	A, @A	2	3	0	(b)	byte (A) \leftarrow imm8	X	_	_	_	_	*	*	_	_	_
	A,@RWi+disp8	2	5	1	(b)	byte (A) \leftarrow ((A))	Χ	*	_	_	_	*	*	_	_	_
	A, @RLi+disp8	3	10	2	(b)	byte (A) \leftarrow	Χ	*	_	_	_	*	*	_	_	_
	•				,	((RWi)+disp8)										
MOV	dir, A	2	3	0	(b)	byte (A) ←	_	_	_	_	-	*	*	_	_	_
MOV	addr16, A	3	4	0	(b)	((RLi)+disp8)	_	_	_	_	_	*	*	_	-	_
MOV	Ri, A	1	2	1	0		_	_	_	_	-	*	*	_	-	_
MOV	ear, A	2	2	1	0	byte (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	-	_
MOV	eam, A	2+	3+ (a)	0	(b)	byte (addr16) \leftarrow (A)	_	_	_	_	_	*	*	_	-	_
MOV	io, A	2	3	0	(b)	byte (Ri) \leftarrow (A)	_	_	_	_	-	*	*	_	-	_
MOV	@RLi+disp8, A	3	10	2	(b)	byte (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	-	_
MOV	Ri, ear	2	3	2	0	byte (eam) \leftarrow (A)	_	_	_	_	_	*	*	_	-	_
MOV MOV	Ri, eam	2+ 2	4+ (a) 4	1 2	(b) 0	byte (io) \leftarrow (A)	_	_	_	-	_	*	*	_	_	_
MOV	ear, Ri eam, Ri	2+	5+ (a)	1	(b)	byte ((RLi) +disp8) ← (A)		_	_	_	_	*	*		_	_
MOV	Ri, #imm8	2	2 (a)	1	0	byte (Ri) ← (ear)		_	_	_		*	*	_	_	_
MOV	io, #imm8	3	5	Ö	(b)	byte (Ri) ← (eam)	_	_	_	_	_	_	_	_	_	_
MOV	dir, #imm8	3	5	Ö	(b)	byte (ear) ← (Ri)	_	_	_	_	_	_	_	_	_	_
MOV	ear, #imm8	3	2	1	0	byte (eam) ← (Ri)	_	_	_	_	_	*	*	_	_	_
MOV	eam, #imm8	3+	4+ (a)	0	(b)	byte (Ri) ← imm8	_	_	_	_	_	_	_	_	_	_
MOV	@AL, AH	2	3	Ö	(b)	byte (io) ← imm8	_	_	_	_	_	*	*	_	_	_
/MOV					,	byte (dir) ← imm8										
	•					byte (ear) ← imm8										
XCH	A, ear	2	4	2	0	byte (eam) ← imm8	Ζ	_	_	_	_	_	_	_	-	_
XCH	A, eam	2+	5+ (a)	0	2× (b)	byte $((A)) \leftarrow (AH)$	Ζ	_	_	_	-	_	_	_	-	_
XCH	Ri, ear	2	7	4	0		_	_	_	_	_	_	_	_	-	_
XCH	Ri, eam	2+	9+ (a)	2	2× (b)		_	_	_	_	_	_	_	_	-	_
						byte (A) \leftrightarrow (ear)										
						byte (A) \leftrightarrow (eam)										
						byte (Ri) \leftrightarrow (ear)										
						byte (Ri) \leftrightarrow (eam)										

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

rable of frameior methaliania (tronal zong trona) for methaliania														T	
Mnemonic	#	~	RG	В	Operation	H	A	I	S	Т	N	Z	٧	С	RM W
MOVW A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	_	*	_	_	_	*	*	_	_	_
MOVW A, addr16	3	4	0	(c)	word (A) ← (addr16)	_	*	_	-	_	*	*	_	_	_
MOVW A, SP	1	1	0	0	word (A) \leftarrow (SP)	_	*	_	-	_	*	*	_	_	_
MOVW A, RWi	1	2	1	0	word $(A) \leftarrow (RWi)$	_	*	_	_	_	*	*	_	_	_
MOVW A, ear	2	2	1	0	word (A) \leftarrow (ear)	_	*	_	_	_	*	*	_	_	_
MOVW A, eam	2+	3+ (a)	0	(c)	word (A) ← (eam)	_	*	_	_	_	*	*	_	_	_
MOVW A, io	2	3 ′	0	(c)	word $(A) \leftarrow (io)$	_	*	_	_	_	*	*	_	_	_
MOVW A, @A	2	3	0	(c)	word $(A) \leftarrow ((A))$	_	_	_	_	_	*	*	_	_	_
MOVW A, #imm16	3	2	0	`o´	word $(A) \leftarrow imm'16$	_	*	_	_	_	*	*	_	_	_
MOVW A, @RWi+disp8	2	5	1	(c)	word $(A) \leftarrow ((RWi))$	_	*	_	_	_	*	*	_	_	_
MOVW A, @RLi+disp8	3	10	2	(c)	+disp8)	_	*	_	_	_	*	*	_	_	_
				(-)	word (A) \leftarrow ((RLi)										
MOVW dir, A	2	3	0	(c)	+disp8)	_	_	_	_	_	*	*	_	_	_
MOVW addr16, A	3	4	Ö	(c)	1 3.56 5)	_	_	_	_	_	*	*	_	_	_
MOVW SP, A	1	1	Ö	0	word (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW RWi, A	1	2	1	Ö	word (addr16) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW ear, A	2	2	1	Ö	word (SP) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW can, A	2+	3+ (a)	0	(c)	word (RWi) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW io, A	2	3	0	(c)	word (ray) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOVW @RWi+disp8, A	2	5	1	(c)	word (ear) \leftarrow (A) word (ear) \leftarrow (A)	_	_	_	_	_	*	*	_	_	
MOVW @RLi+disp8, A	3	10	2	(c)	word (io) \leftarrow (A)	_	_	_		_	*	*		_	_
MOVW @REI+dispo, A	2	3	2	(0)	word ((RWi) +disp8) \leftarrow		_			_	*	*	_	_	_
MOVW RWi, ear	2+	4+ (a)	1	(c)	(A) (((\(\text{(A)}\)) +\(\text{(A)}\)		_			_	*	*		_	_
MOVW RWI, earn	2	4+ (a)	2	0	word ((RLi) +disp8) ←	_	_		_		*	*			_
MOVW ear, RWi	2+	5+ (a)	1	(c)	(A) ((I\Li) +uispo) ←	_	_		_		*	*		_	_
MOVW Balli, KWI	3	2 (a)	1	0	word (RWi) ← (ear)	_	_	_	_		*	*	_		_
MOVW KWI, #IIIII116	4	5	0	_	word (RWi) \leftarrow (ear) word (RWi) \leftarrow (eam)				_				_		_
MOVW lo, #illillillo	4	2	1	(c)		_	_	_	_		*	*	_		_
MOVW ear, #imm16	4 4+		0	_	word (ear) \leftarrow (RWi)	_		_	-				_	_	_
INOVVV earri, #irriirrio	4+	4+ (a)	U	(c)	word (eam) \leftarrow (RWi)	_	_	_	_	_	_	_	_	_	_
INOVAL ALL	0	2	0	(0)	word (RWi) ← imm16						*	*			
MOVW AL, AH	2	3	0	(c)	word (io) ← imm16	_	_	_	_	_			_	_	_
/MOVW @A, T					word (ear) ← imm16										
VOLUM A	0	4	0	0	word (eam) ← imm16										
XCHW A, ear	2	4	2	0		_	_	_	_	_	_	_	_	_	_
XCHW A, eam	2+	5+ (a)	0		word $((A)) \leftarrow (AH)$	_	_	_	_	_	_	-	_	_	_
XCHW RWi, ear	2	7	4	0		_	_	_	_	_	_	_	_	_	_
XCHW RWi, eam	2+	9+ (a)	2	2× (c)	1 (4)	_	_	_	_	_	_	_	_	_	_
					word (A) \leftrightarrow (ear)										
					word (A) \leftrightarrow (eam)										
					word (RWi) \leftrightarrow (ear)										
					word (RWi) \leftrightarrow (eam)										
MOVL A, ear	2	4	2	0	long (A) ← (ear)	_	_	_	_	_	*	*	_	_	_
MOVL A, eam	2+	5+ (a)	0	(d)	$long(A) \leftarrow (ean)$	_	_	_	_	_	*	*	_	_	_
MOVL A, #imm32	5	3	0	0	$long(A) \leftarrow long(B)$	_	_	_	_	_	*	*	_	_	_
7., """	3		9		10.19 (7.1) \ 11111102										
MOVL ear, A	2	4	2	0	long (ear) ← (A)	_	_	_	_	_	*	*	_	_	_
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) \leftarrow (A)	_	_	_	l _	_	*	*	_	_	_ '
		J. (u))	(Δ)	g (Jann) ((/ 1)										

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

			ı			_				1	1		_	-	
Mnemonic	#	~	R G	В	Operation	H	A	I	s	Т	N	Z	٧	С	RM W
ADD A,#imm8 ADD A, dir ADD A, ear ADD A, eam ADD ear, A ADD eam, A ADDC A ADDC A, eam ADDC A, eam ADDC A, eam ADDC A SUB A, dir SUB A, ear SUB A, ear SUB A, eam	2 2 2 2+ 2 2+ 1 2 2+ 1 2 2+ 1 2 2+ 1 2 2+ 1 2 2+ 1	2 5 3 4+ (a) 3 5+ (a) 2 3 4+ (a) 3 5+ (a) 2 3 4+ (a) 3 5+ (a) 2 3 5+ (a) 3	0 0 1 0 2 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0	0 (b) 0 (c) 0 2×(b) 0 (d) 0 (b) 0 0 2×(b) 0 0 (b) 0 0 (b) 0 0 (b) 0 0 (b) 0 0 (b) 0 0 0 (b) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	byte (A) \leftarrow (A) +imm8 byte (A) \leftarrow (A) +(dir) byte (A) \leftarrow (A) +(ear) byte (A) \leftarrow (A) +(eam) byte (ear) \leftarrow (ear) + (A) byte (eam) \leftarrow (eam) + (A) byte (A) \leftarrow (AH) + (AL) + (C) byte (A) \leftarrow (A) + (ear) + (C) byte (A) \leftarrow (A) + (eam) + (C) byte (A) \leftarrow (A) + (eam) + (C) (decimal) byte (A) \leftarrow (A) -imm8 byte (A) \leftarrow (A) -imm8 byte (A) \leftarrow (A) - (ear) byte (A) \leftarrow (A) - (ear) byte (A) \leftarrow (A) - (ear) byte (ear) \leftarrow (ear) - (A) byte (ear) \leftarrow (ear) - (A) byte (A) \leftarrow (AH) - (AL) - (C) byte (A) \leftarrow (A) - (earn) - (C) byte (A) \leftarrow (A) - (earn) - (C) byte (A) \leftarrow (AH) - (AL) - (C) (decimal)	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z					* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	
ADDW A ADDW A, ear ADDW A, eam ADDW A, #imm16 ADDW ear, A ADDW eam, A ADDCW A, ear ADDCW A, ear ADDCW A, ear SUBW A SUBW A, ear SUBW A, eam SUBW A, #imm16 SUBW ear, A	1 2 2+ 3 2 2+ 2 2+ 1 2 2+ 3 2 2+ 2 2+ 3 2 2+ 2 2+	2 3 4+ (a) 2 3 5+ (a) 3 4+ (a) 2 3 5+ (a) 3 4+ (a)	0 1 0 0 2 0 1 0 0 1 0 0 2 0 1 0 0 0 1	0 0 (c) 0 0 2×(c) 0 (c) 0 0 2×(c) 0 (c)	word (A) \leftarrow (AH) + (AL) word (A) \leftarrow (A) +(ear) word (A) \leftarrow (A) +(eam) word (A) \leftarrow (A) +(eam) word (ear) \leftarrow (ear) + (A) word (eam) \leftarrow (eam) + (A) word (A) \leftarrow (A) + (ear) + (C) word (A) \leftarrow (A) + (eam) + (C) word (A) \leftarrow (AH) - (AL) word (A) \leftarrow (AH) - (ear) word (A) \leftarrow (A) - (ear) word (A) \leftarrow (A) - (eam) word (ear) \leftarrow (ear) - (A) word (eam) \leftarrow (eam) - (A) word (A) \leftarrow (A) - (ear) - (C) word (A) \leftarrow (A) - (eam) - (C)						* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	- - - * - - - - *
ADDL A, ear ADDL A, eam ADDL A, #imm32 SUBL A, ear SUBL A, eam SUBL A,	2 2+ 5 2 2+ 5	6 7+ (a) 4 6 7+ (a) 4	2 0 0 2 0 0	0 (d) 0 0 (d) 0	$\begin{array}{l} \text{long (A)} \leftarrow \text{(A)} + \text{(ear)} \\ \text{long (A)} \leftarrow \text{(A)} + \text{(eam)} \\ \text{long (A)} \leftarrow \text{(A)} + \text{imm32} \\ \text{long (A)} \leftarrow \text{(A)} - \text{(ear)} \\ \text{long (A)} \leftarrow \text{(A)} - \text{(eam)} \\ \text{long (A)} \leftarrow \text{(A)} - \text{imm32} \end{array}$	_ _ _ _ _			_ _ _ _	_ _ _ _ _	* * * * * *	* * * * * *	* * * * * *	* * * * *	- - - - -

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mn	nemonic	#	~	R G	В	Operation	L	A	ı	s	Т	N	Z	٧	С	RM W
INC INC	ear eam	2 2+	2 5+ (a)	2 0	0 2× (b)	byte (ear) ← (ear) +1 byte (eam) ← (eam) +1	_	_	_ _	_	_	*	*	*	_ _	*
DEC DEC	ear eam	2 2+	3 5+ (a)	2 0	0 2× (b)	byte (ear) ← (ear) −1 byte (eam) ← (eam) −1	_	_	_ _	_	_	*	*	*		- *
INCW INCW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	_	_	_	_	_	*	*	*		- *
DECW DECW	ear eam	2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow (ear) −1 word (eam) \leftarrow (eam) −1	_	_	_ _	_	_	*	*	*		_ *
INCL INCL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) +1 long (eam) ← (eam) +1	_	_	_ _	_	_	*	*	*	1 1	*
DECL DECL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) −1 long (eam) ← (eam) −1	_	_ _	_ _	_ _	_ _	*	*	*	_ _	_ *

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mn	emonic	#	~	R G	В	Operation	H	A	I	s	Т	N	Z	٧	С	RM W
CMP	A	1	1	0	0	byte (AH) – (AL)	_	_	_	_	_	*	*	*	*	_
CMP	A, ear	2	2	1	0	byte (A) ← (ear)	_	_	_	_	_	*	*	*	*	-
CMP	A, eam	2+	3+ (a)	0	(b)	byte (A) ← (eam)	_	_	_	_	_	*	*	*	*	-
CMP	A, #imm8	2	2	0	0	byte (A) ← imm8	_	_	_	_	_	*	*	*	*	-
CMPW	Α	1	1	0	0	word (AH) – (AL)	_	_	-	-	_	*	*	*	*	_
CMPW	A, ear	2	2	1	0	word (A) ← (ear)	-	_	_	_	_	*	*	*	*	-
CMPW	A, eam	2+	3+ (a)	0	(c)	word (A) \leftarrow (eam)	-	_	_	_	_	*	*	*	*	-
CMPW	A, #imm16	3	2	0	0	word (A) \leftarrow imm16	_	_	_	_	_	*	*	*	*	-
CMPL	A, ear	2	6	2	0	word (A) ← (ear)	_	_	-	-	_	*	*	*	*	_
CMPL	A, eam	2+	7+ (a)	0	(d)	word (A) \leftarrow (eam)	_	_	_	_	_	*	*	*	*	-
CMPL	A, #imm32	5	3	0	0	word (A) \leftarrow imm32	-	_	_	_	_	*	*	*	*	-

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnem	onic	#	~	R G	В	Operation	L	A H	I	s	Т	N	Z	٧	С	RM W
DIVU	Α	1	*1	0	0	word (AH) /byte (AL)	_	_	_	_	_	_	_	*	*	_
DIVU ear	Α,	2	*2	1	0	Quotient → byte (AL) Remainder → byte (AH) word (A)/byte (ear)	_	ı	_	_	_	_	_	*	*	_
		2+	*3	0	*6	Quotient \rightarrow byte (A) Remainder \rightarrow	_	_	_	_	_	_	_	*	*	-
DIVU eam	Α,	2	*4	1	0	byte (ear) word (A)/byte (eam)	_	_	_	_	_	_	_	*	*	_
DIVUW ear	A,	2+	*5	0	*7	Quotient → byte (A) Remainder → byte (eam) long (A)/word (ear)	_	ı	_	_	_	_	_	*	*	_
DIVUW	А	1	*8	0	0	Quotient → word (A) Remainder → word (ear)	_	_	_	_	_	_	_	_	_	_
eam	, ,,	2	*9	1	0	long (A)/word (eam)	_	_	_	_	_	_	_	_	_	_
		2+	*10	0	(b)	Quotient → word (A) Remainder → word (eam)	_	_	_	_	_	_	_	_	_	-
MULU	Α	1	*11	0	0	,	_	_	_	_	_	_	_	_	_	_
MULU	Α,	2	*12	1	0	byte (AH) *byte (AL) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
ear MULU eam	Α,	2+	*13	0	(c)	byte (A) *byte (ear) → word (A) byte (A) *byte (eam) → word (A)	_	-	_	_	_	_	_	_	_	-
MULUW MULUW						word (AH) *word (AL) \rightarrow long (A) word (A) *word (ear) \rightarrow long (A) word (A) *word (eam) \rightarrow long (A)										
ear MULUW eam	•					() () () () () () ()										

^{*1: 3} when the result is zero, 7 when an overflow occurs, and 15 normally.

^{*2: 4} when the result is zero, 8 when an overflow occurs, and 16 normally.

^{*3: 6 + (}a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.

^{*4: 4} when the result is zero, 7 when an overflow occurs, and 22 normally.

^{*5: 6 + (}a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.

^{*6: (}b) when the result is zero or when an overflow occurs, and $2 \times$ (b) normally.

^{*7: (}c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.

^{*8: 3} when byte (AH) is zero, and 7 when byte (AH) is not zero.

^{*9: 4} when byte (ear) is zero, and 8 when byte (ear) is not zero.

^{*10:} 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.

^{*11: 3} when word (AH) is zero, and 11 when word (AH) is not zero.

^{*12: 4} when word (ear) is zero, and 12 when word (ear) is not zero.

^{*13: 5 + (}a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.

Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mn	emonic	#	~	R G	В	Operation	L	A H	I	s	Т	N	Z	٧	С	RM W
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)	_ _ _ _	- - - -				* * * *	* * * * *	RRRRR		- - - *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)	_ _ _ _	- - - -				* * * *	* * * * *	R R R R R		_ _ _ *
XOR XOR XOR XOR XOR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 (b) 0 2× (b)	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A)	_ _ _ _	- - - -			1 1 1 1 1	* * * *	* * * * *	RRRRR		- - - *
NOT NOT NOT	A ear eam	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (b)	byte (A) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	- - -	- - -		1 1 1		* *	* *	R R R	1 1 1	_ _ *
ANDW ANDW ANDW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)	- - - -				11111	* * * * * *	* * * * * *	λ λ λ λ λ		*
ORW ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	- - - - -	- - - -			11111	* * * * * *	* * * * * *	RRRRRR	1 1 1 1 1	- - - - *
XORW XORW XORW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (eam) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A)	- - - - -	- - - -			11111	* * * * * *	* * * * * *	RRRRRR		
NOTW NOTW NOTW	ear	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (c)	word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	_ _ _	- - -	_ _ _	_ 	- -	* *	* *	R R R	_ 	- - *

Table 14 Logical 2 Instructions (Long Word) [6 Instructions]

Mn	emonic	#	~	R G	В	Operation	L	A	I	s	Т	N	Z	٧	С	RM W
ANDL ANDL	A, ear A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	_	_	_	_	_	*	*	R R	_	_ _
ORL ORL	A, ear A, eam	2 2+	6 7+ (a)	2 0	0 (d)	long (A) \leftarrow (A) or (ear) long (A) \leftarrow (A) or (eam)		_ _	_ _	_ _	_	*	*	R R	_	_ _
XORL XORL	A, ea A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) xor (ear) long (A) \leftarrow (A) xor (eam)	1 1	_ _	_ _	_ _	_ _	*	*	R R	_ _	_ _

Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mn	nemonic	#	~	R G	В	Operation	L	A	I	s	Т	N	Z	٧	С	RM W
NEG	Α	1	2	0	0	byte (A) \leftarrow 0 – (A)	Х	_	_	-	_	*	*	*	*	ı
NEG NEG	ear eam	2 2+	3 5+ (a)	2 0		byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	_ _	_ _	_ _	_	_ _	*	*	*	*	- *
NEGW		1	2	0	0	word (A) \leftarrow 0 – (A)	_	-	-	-	-	*	*	*	*	ı
NEGW NEGW		2 2+	3 5+ (a)	2	0 2× (c)	word (ear) \leftarrow 0 - (ear) word (eam) \leftarrow 0 - (eam)	_ _	_	_	_	_	*	*	*	*	*

Table 16 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	#	~	RG	В	Operation	LH	A	I	S	Т	N	Z	٧	С	RM W
NRML A, R0	2	*1	1	0	$\begin{array}{l} \text{long (A)} \leftarrow \text{Shift until first} \\ \text{digit is "1"} \\ \text{byte (R0)} \leftarrow \text{Current shift} \\ \text{count} \end{array}$	_	-	-	1	1	-	*	1	_	-

^{*1: 4} when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).

Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	#	~	R G	В	Operation	L	A	I	s	T	N	Z	٧	С	RM W
RORCA ROLC A	2 2	2 2	0	0	byte (A) \leftarrow Right rotation with carry byte (A) \leftarrow Left rotation with carry	_ _	_	_ _	_	_ _	*	*		*	_
RORCear RORCeam ROLC ear ROLC eam ASR A, R0 LSR A, R0 LSL A, R0	2 2+ 2 2+ 2 2 2	3 5+ (a) 3 5+ (a) *1 *1	2 0 2 0 1 1 1	0 2× (b) 0 2× (b) 0 0	byte (ear) \leftarrow Right rotation with carry byte (eam) \leftarrow Right rotation with carry byte (ear) \leftarrow Left rotation with carry byte (eam) \leftarrow Left rotation with carry byte (A) \leftarrow Arithmetic right barrel shift (A, R0) byte (A) \leftarrow Logical right barrel shift (A, R0) byte (A) \leftarrow Logical left barrel shift (A, R0)					* * _	* * * * * *	* * * * * *		* * * * * *	- * - - -
ASRWA LSRW A/SHRW A LSLW A/SHLW A ASRWA, R0 LSRW A, R0 LSLW A, R0	1 1 1 2 2 2	2 2 2 *1 *1 *1	0 0 0 1 1 1	0 0 0 0	word (A) \leftarrow Arithmetic right shift (A, 1 bit) word (A) \leftarrow Logical right shift (A, 1 bit) word (A) \leftarrow Logical left shift (A, 1 bit) word (A) \leftarrow Arithmetic right barrel shift (A, R0) word (A) \leftarrow Logical right barrel shift (A, R0) word (A) \leftarrow Logical left barrel shift (A, R0)					* * * -	* R * * * *	* * * * * *		* * * * * *	- - - -
ASRL A, R0 LSRL A, R0 LSLL A, R0	2 2 2	*2 *2 *2	1 1 1	0 0 0	long (A) ← Arithmetic right shift (A, R0) long (A) ← Logical right barrel shift (A, R0) long (A) ← Logical left barrel shift (A, R0)	1 1 1	_ _ _	1 1 1	1 1 1	* *	* * *	* *	1 1 1	* *	_ _ _

^{*1: 6} when R0 is 0, 5 + (R0) in all other cases.

^{*2: 6} when R0 is 0, 6 + (R0) in all other cases.

Table 18 Branch 1 Instructions [31 Instructions]

Mne	emonic	#	~	RG	В	Operation	L	A	I	s	Т	N	Z	V	С	RM W
BZ/BEC	Q rel	2	*1	0	0	Branch when (Z) = 1	_	_	_	_	_	_	_	_	_	-
BNZ/BN	NE rel	2	*1	0	0	Branch when $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BC/BLC) rel	2	*1	0	0	Branch when $(C) = 1$	_	_	_	_	_	_	_	_	_	_
BNC/BH	HS rel	2	*1	0	0	Branch when $(C) = 0$	_	_	_	_	_	_	_	_	_	_
BN	rel	2	*1	0	0	Branch when $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BP	rel	2	*1	0	0	Branch when $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BV	rel	2	*1	0	0	Branch when $(V) = 1$	_	_	_	_	_	_	_	_	_	_
BNV	rel	2	*1	0	0	Branch when $(V) = 0$	_	_	_	_	_	_	_	_	_	_
вт	rel	2	*1	0	0	Branch when $(T) = 1$	_	_	_	_	_	_	_	_	_	_
BNT	rel	2	*1	0	0	Branch when $(T) = 0$	_	_	_	_	_	_	_	_	_	_
BLT	rel	2	*1	0	0	Branch when (V) xor $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BGE	rel	2	*1	0	Ö	Branch when (V) xor $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BLE	rel	2	*1	0	Ö	Branch when ((V) xor (N)) or	_	_	_	_	_	_	_	_	_	_
BGT	rel	2	*1	Ö	Ö	(Z) = 1	_	_	_	_	_	_	_	_	_	_
BLS	rel	2	*1	0	Ö	Branch when ((V) xor (N)) or	_	_	_	_	_	_	_	_	_	_
BHI	rel	2	*1	Ô	0	(Z) = 0	_	_	_	_	_	_	_	_	_	_
BRA	rel	2	*1	0	0	Branch when (C) or $(Z) = 1$	_	_	_	_	_	_	_	_	_	_
DIVI	101	_				Branch when (C) or $(Z) = 0$										
JMP	@A	1	2	0	0	Branch unconditionally	_	_	_	_	_	_	_	_	_	_
JMP	addr16	3	3	0	0	Branch disconditionally	_	_	_		_	_	_	_	_	_
JMP	@ear	2	3	1	0	word (PC) \leftarrow (A)		_	_		_	_		_		_
JMP	@eam	2+	4+ (a)	0	(c)	word (PC) ← addr16		_	_		_	_		_		_
JMPP	@ear *3	2	5 5	2	0	word (PC) \leftarrow add 16 word (PC) \leftarrow (ear)			_	_	_	_		_		_
JMPP	@eam *3	2+	6+ (a)	0	(d)	word (PC) ← (ear)			_	_	_		_	_	_	_
JMPP	addr24	2+ 4	4	0	(u) 0	word (PC) \leftarrow (ear), (PCB) \leftarrow	_		_	_		_	_		_	_
JIVIPP	addi24	4	4	U	U		_	_	_	_	_	_	_	_	_	_
	. *4	2	6	4	(-)	(ear +2)										
CALL	@ear *4	2	6	1	(c)	word (PC) \leftarrow (eam), (PCB) \leftarrow	_	_	_	_	_	_	_	_	_	_
CALL	@eam *4	2+	7+ (a)	0		(eam +2)	_	_	_	_	_	_	_	_	_	-
CALL	addr16 _{*5}	3	6 7	0	(c)	word (PC) \leftarrow ad24 0 to 15,	_	_	_	_	_	_	_	_	_	_
		1		0		(PCB) ← ad24 16 to 23	_	_	_	_	_	_	_	_	_	_
CALLP	@ear *6	2	10	2	2× (c)	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
		_	44 : (-)	_	4.0	word (PC) ← (eam)										
CALLP	@eam *6	2+	11+ (a)	0	*2	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
			4.0			Vector call instruction										
CALLP	addr24 *7	4	10	0	2× (c)	word (PC) \leftarrow (ear) 0 to 15	_	_	_	_	_	_	_	_	_	_
						(PCB) ← (ear) 16 to 23										
						word (PC) \leftarrow (eam) 0 to 15										
						(PCB) ← (eam) 16 to 23										
						word (PC) ← addr0 to 15,										
						(PCB) ← addr16 to 23										

^{*1: 4} when branching, 3 when not branching.

^{*2: (}b) + $3 \times$ (c)

^{*3:} Read (word) branch address.

^{*4:} W: Save (word) to stack; R: read (word) branch address.

^{*5:} Save (word) to stack.

^{*6:} W: Save (long word) to W stack; R: read (long word) R branch address.

^{*7:} Save (long word) to stack.

Table 19 Branch 2 Instructions [19 Instructions]

CBNE A, #imm8, rel CWBNEA, #imm16, rel 3				RG	В	Operation	H	A	I	S	T	N	Z	٧	С	RM W
CWBNE ear, #imm8, rel		3	*1	0	0	Branch when byte (A) ≠	_	_	_	_	_	*	*	*	*	_
CBNE ear, #imm8, rel CBNE eam, #imm8, rel CBNE eam, #imm8, rel ** ** ** ** ** ** ** ** ** ** ** ** **	BNEA, #imm16, rel	4	*1	0	0		_	_	_	_	_	*	*	*	*	-
CBNE eam, #imm8, rei 4 * * * * * * * * * * * * * * * * * *	JE		+2		0										.	
rel*9 CWBNEear, #imm16, rel CWBNEeam, #imm16, 3 *5 2 0 imm8 rel*9 SHZ earl, #imm16, 5 *4 1 0 Branch when byte (ear) ≠						imm16	_	-		_	_					_
CWBNEear, #imm16, rel 5+ *3 0 (c) imm8 Branch when byte (eam) ≠ cl* * * * * * * - Branch when word (ear) ≠ cl* CWBNEeam, #imm16, rel*9 3 *5 2 0 imm8 Branch when word (ear) ≠ cl* * - * * * * * - * * * * * - * * * * * * * - *					` '	Branch when byte (ear) +	_	_	_	_	_	*	*	*	*	_
rel CWBNEeam, #imm16, 3 *5 2 0 Branch when byte (eam) ≠			*3				_	_	_	_	_	*	*	*	*	_
rel*9 3+ *6 2 2× (b) imm16 * * * * -	,,				(-)	_										
3+ *6 2 2× (b) imm16		3	*5	2	0		_	_	_	_	_	*	*	*	_	-
	,			_	- 4.)											*
Description		3+	*6	2	2× (b)		_	-	_	-	-	*	*	*	-	*
DBNZ ear, rel Branch when word (eam) ≠	NZ ear, rei															
DBNZ eam, rel 3 *5 2 0	NZ pam rol	3	*5	2	0		_	_	_	_	_	*	*	*	_	_
Branch when byte (ear) =	VZ Gaill, IGI			_		Branch when byte (ear) =										
$ 3+ ^{*6} 2 2\times (c) (ear)-1$, and $(ear)\neq 0$		3+	*6	2	2× (c)		_	_	_	_	_	*	*	*	_	*
DWBNZ ear, rel Branch when byte (eam) =	BNZ ear, rel				, ,											
(eam) – 1, and (eam) ≠ 0		_		_	0 ()	(eam) – 1, and (eam) ≠ 0				_						
DWBNZ eam, rel 2 20 0 8× (c) R S	BNZ eam, rel					Described to the second of the second	_	_		S		_	_	_	_	-
3 16 0 $6 \times$ (c) Branch when word (ear) = - - R S - - - - - - - - -					6× (c)	Branch when word (ear) =		_		50		_		_	_	-
1 1 0 0 \(\) (c) (ear) = 1, and (ear) \(\pm 0 \)	#vct8				8× (c)	Rranch when word (eam) -	_	_			_	_	_	_	_	_
INT addr16 1 15 0 $6 \times (c)$ (eam) $= 1$ 1 15 0 $6 \times (c)$ (eam) $= 1$ 1 15 0 $6 \times (c)$ (eam) $= 1$ 1 1 1 1 1 1 1 1 1					6× (c)	(eam) – 1. and (eam) ≠ 0	_	_		*	*	*	*	*	*	_
INTP addr24			. •		,	(, ., (,										
INT9 2 6 0 (c) Software interrupt		2	6	0	(c)		_	_	_	_	_	_	_	_	_	-
RETI Software interrupt	П															
Software interrupt	16 (1) 10															
LINK #local8 Software interrupt	K #local8	4	_	0	(c)											
1 5 0 (c) Return from interrupt		1	Э	U	(0)	Return from interrupt	_	_	_	_	_	_	_	_	_	_
At constant entry, save old						At constant entry, save old										
UNLINK 1 4 0 (c) frame pointer to stack, set - - - - - -	_INK	1	4	0			_	_	_	_	_	_	_	_	_	_
1 6 0 (d) new frame pointer, and		1	6	0	(d)	new frame pointer, and	_	_	_	_	_	_	_	_	_	-
allocate local pointer area																
RET *7 At constant entry, retrieve																
RETP *8 old frame pointer from stack.	P *°					old frame pointer from stack.										
Return from subroutine						Return from subroutine										
Return from subroutine																

^{*1: 5} when branching, 4 when not branching

^{*2: 13} when branching, 12 when not branching

^{*3: 7 + (}a) when branching, 6 + (a) when not branching

^{*4: 8} when branching, 7 when not branching

^{*5: 7} when branching, 6 when not branching

^{*6: 8 + (}a) when branching, 7 + (a) when not branching

^{*7:} Retrieve (word) from stack

^{*8:} Retrieve (long word) from stack

^{*9:} In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.

Table 20 Other Control Instructions (Byte/Word/Long Word) [28 Instructions]

Mnemonic	#	~	RG	В	Operation	L H	A H	I	s	Т	N	z	٧	С	RM W
PUSHWA	1	4	0	(c)	word (SP) \leftarrow (SP) -2 , ((SP)) \leftarrow	_	-	-	-	-	-	-	-	-	_
PUSHWAH	1	4	0	(c)	(A)	-	_	-	_	_	-	_	_	_	_
PUSHWPS	1	4	0	(c)	word (SP) \leftarrow (SP) -2 , ((SP)) \leftarrow	-	_	-	-	_	-	_	_	_	-
PUSHWrlst	2	*3	*5	*4	(AH)	-	_	-	_	_	-	_	_	_	_
DODW A				()	word (SP) \leftarrow (SP) -2 , ((SP)) \leftarrow		*								
POPW A	1	3	0	(c)	(PS)	_	•	_	_	_	_	_	_	_	_
POPW AH	1	3	0	(c)	$(SP) \leftarrow (SP) -2n, ((SP)) \leftarrow$	_	_	*	- *	- *	-	- *	_ *	_ *	_
POPW PS POPW rlst	1 2	4 *2	0 *5	(c) *4	(rlst)	_	_								_
POPW list		2	3	4	word (A) \leftarrow ((SP)), (SP) \leftarrow (SP)	_	_	_	_	_	_	_	_	_	_
JCTX @A	1	14	0	6× (c)	+2	_	_	*	*	*	*	*	*	*	_
JOIN WA	'	14	U	6× (C)	word (AH) \leftarrow ((SP)), (SP) \leftarrow										_
AND CCR,	2	3	0	0	(SP) +2	_	_	*	*	*	*	*	*	*	_
#imm8	2	3	0	0	word (PS) \leftarrow ((SP)), (SP) \leftarrow	_	_	*	*	*	*	*	*	*	_
OR CCR,	_	3	U		(SP) +2										
#imm8	2	2	0	0	$(rlst) \leftarrow ((SP)), (SP) \leftarrow (SP)$	_	_	_	_	_	_	_	_	_	_
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	2	Ö	0	+2n	_	_	_	_	_	_	_	_	_	_
MOV RP, #imm8	-	_													
MOV ILM, #imm8	2	3	1	0	Context switch instruction	_	_	_	_	_	_	_	_	_	_
, ,		2+ (a)	1	0		_	_	_	_	_	_	_	_	_	_
MOVEA RWi, ear	2	1	0	0	byte (CCR) \leftarrow (CCR) and imm8	_	*	_	_	_	_	_	_	_	_
MOVEA RWi, eam	2+	1+ (a)	0	0	byte $(CCR) \leftarrow (CCR)$ or imm8	_	*	_	_	_	_	_	_	_	_
MOVEA A, ear		, ,													
MOVEA A, eam	2	3	0	0	byte (RP) ←imm8	_	_	-	_	_	-	_	_	_	-
	3	3	0	0	byte (ILM) ←imm8	-	_	-	_	_	-	_	_	_	-
ADDSP #imm8	_				. (=,,,,,,,	_									
ADDSP #imm16	2	*1	0	0	word (RWi) ←ear	Z	*	_	_	_	*	*	_	_	-
MOV/ A book	2	1	0	0	word (RWi) ←eam	_	_	_	_	_	•		_	_	_
MOV A, brgl	4			_	word(A) ←ear										
MOV brg2, A	1	1	0	0	word (A) ←eam	_	_	_	_	_	_	_	_	_	_
NOP	1	1	0	0	word (SP) \leftarrow (SP) +ext (imm8)	_	_	_	_	_	_	_	_	_	_
ADB	1	1 1	0	0	word (SP) \leftarrow (SP) +imm16	_	_	_	_					_	_
DTB	1	1	0	0	word (Sr) ← (Sr) + iiiiii110	_	_	_	_	_	_	_	_	_	_
PCB	1	1	0	0	byte (A) \leftarrow (brgl)	_	_	_	_	_	_	_	_	_	_
SPB	1	1	ő	0	byte (brg2) \leftarrow (A)	_	_	_	_	_	_	_	_	_	_
NCC	'	'			2) to (2.92) to (2.9										
CMR					No operation										
					Prefix code for accessing AD										
					space										
					Prefix code for accessing DT										
					space										
					Prefix code for accessing PC										
					space										
					Prefix code for accessing SP										
					space										
					Prefix code for no flag change										
					Prefix code for common										
					register bank										

^{*1:} PCB, ADB, SSB, USB, and SPB: 1 state DTB, DPR : 2 states

^{*2:} $7 + 3 \times (pop count) + 2 \times (last register number to be popped)$, 7 when rlst = 0 (no transfer register)

^{*3: 29 + (}push count) $-3 \times$ (last register number to be pushed), 8 when rlst = 0 (no transfer register)

^{*4:} Pop count \times (c), or push count \times (c)

*5: Pop count or push count.

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 21 Bit Manipulation Instructions [21 Instructions]

NAON (D. A. J. J.			RG	В	Operation	H	A	ı	S	T	N	Z	٧	С	RM W
MOVB A, dir:bp	3	5	0	(b)	byte (A) ← (dir:bp) b	Z Z	*	_	_	_	*	*	_	_	_
MOVB A,	4	5	0	(b)	byte (A) ← (addr16:bp) b	Z	*	_	_	_	*	*	_	_	_
addr16:bp	3	4	0	(b)	byte (A) \leftarrow (io:bp) b	Ζ	*	_	_	_	*	*	_	_	_
MOVB A, io:bp															
	3	7	0	2× (b)	bit (dir:bp) b \leftarrow (A)	_	_	_	_	_	*	*	_	_	*
MOVB dir:bp, A	4	7	0	2× (b)	bit (addr16:bp) $b \leftarrow (A)$	_	_	_	_	_	*	*	_	_	*
MOVB addr16:bp, A	3	6	0	2× (b)	bit (io:bp) b \leftarrow (A)	-	_	-	-	-	*	*	-	_	*
MOVB io:bp, A	3	7	0	2× (b)	bit (dir:bp) b \leftarrow 1	_	_	_	_	_	_	_	_	_	*
',	4	7	0	2× (b)	bit (addr16:bp) b ← 1	_	_	_	_	_	_	_	_	_	*
SETB dir:bp	3	7	0		bit (io:bp) b \leftarrow 1	_	_	_	-	-	-	-	_	_	*
SETB addr16:bp SETB io:bp	3	7	0	2× (h)	bit (dir:bp) b \leftarrow 0	_	_	_	_	_	_	_	_	_	*
021B 10.5p	4	7	0		bit (addr16:bp) b \leftarrow 0	_	_	_	_	_	_	_	_	_	*
CLRB dir:bp	3	7	0		bit (io:bp) b \leftarrow 0	_	_	_	_	_	_	_	_	_	*
CLRB addr16:bp	•	•		2× (5)	Sit (10.5p) 5 \ 0										
CLRB io:bp	4	*1	0	(b)	Branch when $(dir:bp) b = 0$	_	_	_	_	_	_	*	_	_	_
02.12 .0.05	5	*1	0	(b)	Branch when (addr16:bp) $b = 0$	_	_	_	_	_	_	*	_	_	_
BBC dir:bp, rel	4	*2	0	(b)	Branch when (io:bp) b = 0	_	_	_	_	_	_	*	-	_	_
BBC addr16:bp,			_	4. \								*			
rel	4	*1	0	(b)	Branch when (dir:bp) b = 1	_	_	_	_	_	_	*	_	-	_
BBC io:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $b = 1$	_	_	_	_	_	_	*	_	_	_
DDO III I I I I I	4	*2	0	(b)	Branch when (io:bp) b = 1	_	_	_	_	_	_	^	_	_	_
BBS dir:bp, rel BBS addr16:bp,	_	*3	_	O (h.)	Drop ob vileop (o dala Ciba) b 4							*			*
1 '	5	*3	0	2× (b)	Branch when (addr16:bp) $b = 1$, bit = 1	_	_	_	_	_	_		_	_	
rel BBS io:bp, rel	3	*4	0	*5	DIL = 1										
BBS io:bp, rel	3		U	0	Wait until (io:bp) b = 1	_	_	_	_	_	_	_	_	_	_
CDDC addr16:hp	3	*4	0	*5	vvait until (lo.bp) b = 1							_			
SBBS addr16:bp,	3	•	U	3	Wait until (io:bp) b = 0	_	_	_	_	_	_	_	_	_	_
IEI					van unin (10.0p) b = 0										
WBTS io:bp															
WBTC io:bp															

^{*1: 8} when branching, 7 when not branching

^{*2: 7} when branching, 6 when not branching

^{*3: 10} when condition is satisfied, 9 when not satisfied

^{*4:} Undefined count

^{*5:} Until condition is satisfied

Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	#	~	RG	В	Operation	L	A	I	s	Т	N	Z	٧	С	RM W
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow$ (A) 8 to 15	_	_	-	_	-	_	_	١	١	_
SWAPW/XCHW AL, AH	1	2	0	0	word $(AH) \leftrightarrow (AL)$	_	*	_	_	_	_	_	_	_	_
EXT	1	1	0	0	byte sign extension	Χ	_	_	_	_	*	*	_	_	_
EXTW	1	2	0	0	word sign extension	_	Χ	_	_	_	*	*	_	_	-
ZEXT	1	1	0	0	byte zero extension	Ζ	_	_	_	_	R	*	_	_	-
ZEXTW	1	1	0	0	word zero extension	_	Z	_	_	_	R	*	ı	_	-

Table 23 String Instructions [10 Instructions]

Mnemonic	#	~	RG	В	Operation	L	A	I	s	Т	N	Z	٧	С	RM W
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ← @AL+, counter	_	_	_	_	_	_	_	_	-	_
MOVSD	2	*2	*5	*3	=RW0	_	_	_	_	_	_	_	_	_	-
SCEQ/SCEQI	2	*1	*5 *5	*4	Byte transfer @AH– ← @AL–, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCEQD FISL/FILSI	2	6m +6	*5		Byte retrieval (@AH+) – AL, counter = RW0 Byte retrieval (@AH–) – AL, counter = RW0	_	_	_	_	_	*	*	_	1	-
					Byte filling @AH+ ← AL, counter = RW0										
MOVSW/ MOVSWI MOVSWD	2	*2 *2	*8 *8	*6 *6	Word transfer @AH+ ← @AL+, counter = RW0 Word transfer @AH- ← @AL-, counter	_	_	_	_	_	_	_	1 1	1 1	-
INIOVSVID	2	*1	*8	*7	= RW0	_	_	_	_	_	*	*	*	*	_
SCWEQ/	2	*1	*8	*7	-100	_	_	_	_	_	*	*	*	*	_
SCWEQI SCWEQD FILSW/FILSWI	2	6m +6	*8	*6	Word retrieval (@AH+) – AL, counter = RW0 Word retrieval (@AH–) – AL, counter = RW0	_	_	_	_	_	*	*	ı	1	-
					Word filling @AH+ ← AL, counter = RW0										

m: RW0 value (counter value)

n: Loop count

^{*1: 5} when RW0 is 0, 4 + 7 × (RW0) for count out, and $7 \times n + 5$ when match occurs

^{*2: 5} when RW0 is 0, $4 + 8 \times (RW0)$ in any other case

^{*3: (}b) \times (RW0) + (b) \times (RW0) when accessing different areas for the source and destination, calculate (b) separately for each.

^{*4: (}b) \times n

^{*5: 2 × (}RW0)

^{*6: (}c) \times (RW0) + (c) \times (RW0) when accessing different areas for the source and destination, calculate (c) separately for each.

^{*7: (}c) × n

^{*8: 2 × (}RW0)

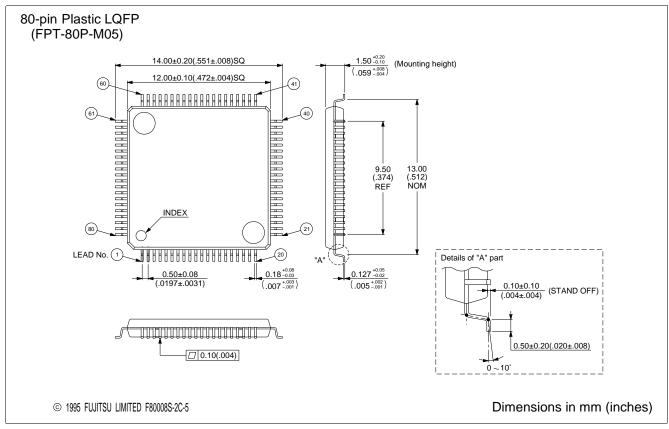
■ MASK OPTIONS

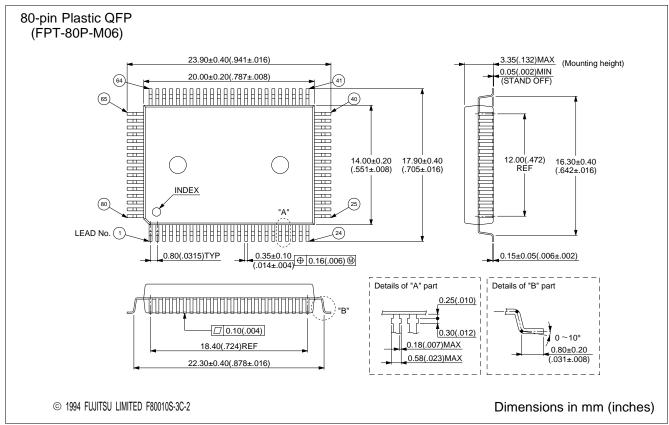
• MB90670 series

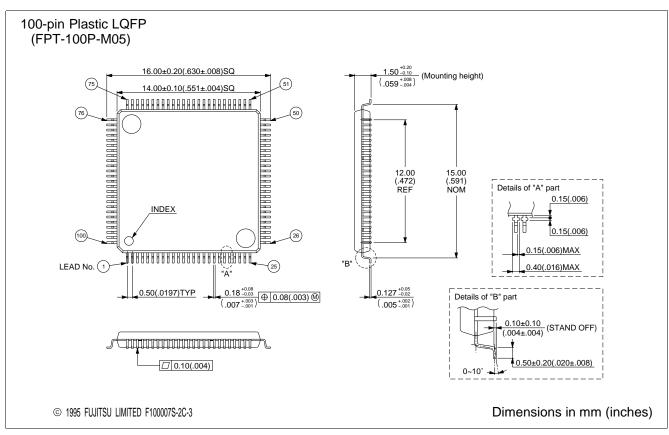
No.	Part number	MB90671 MB90672 MB90673	MB90P673	MB90V670			
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible			
1	Pull-up resistors P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P67, P70 to P77, P80, RST, MD1, MD0	Specify by pin	Specify by pin	Without pull-up resistor			
2	Pull-down resistors MD1, MD0	Specify by pin	Specify by pin	Without pull-up resistor			

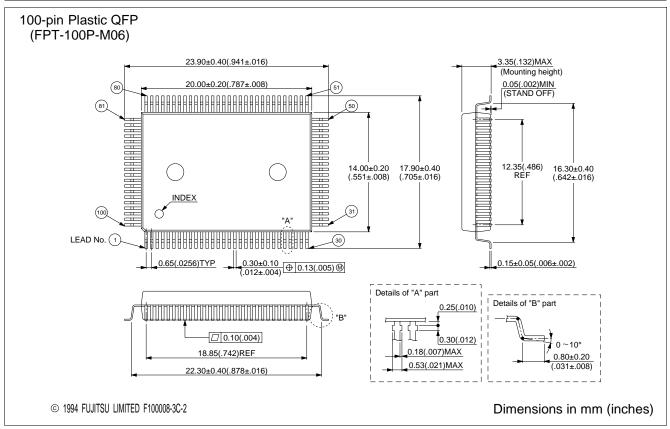
• MB90675 series

No.	Part number	MB90676 MB90677 MB90678	MB90P678	MB90V670			
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible			
1	Pull-up resistors P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P67, P70 to P77, P80 to P86, P90, P91, PA0 to PA7, PB0 to PB2, RST, MD1, MD0	Specify by pin	Specify by pin	Without pull-up resistor			
2	Pull-down resistors MD1, MD0	Specify by pin	Specify by pin	Without pull-up resistor			


Notes: • The pull-up register configured as a port pin is switched-off in the stop mode and during the hardware standby.


• In turning on power, option settings can not be made until clocks are supplied because 8 machine cycles are needed for option settings for the MB90P670/P675.


■ ORDERING INFORMATION


Part number	Package	Remarks
MB90671PFV MB90672PFV MB90673PFV MB90T673PFV MB90P673PFV	80-pin Plastic LQFP (FPT-80P-M05)	
MB90671PF MB90672PF MB90673PF MB90T673PF MB90P673PF	80-pin Plastic QFP (FPT-80P-M06)	
MB90676PFV MB90677PFV MB90678PFV MB90T678PFV MB90P678PFV	100-pin Plastic LQFP (FPT-100P-M05)	
MB90676PF MB90677PF MB90678PF MB90T678PF MB90P678PF	100-pin Plastic QFP (FPT-100P-M06)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka

Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan

Tel: 81(44) 754-3763 Fax: 81(44) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division

3545 North First Street San Jose, CA 95134-1804, USA

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9811

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.